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Abstract

This thesis explores the integration of Quantization and Parameter-Efficient Fine-Tuning
(PEFT) methods in optimizing Large Language Models (LLMs). While Quantization
and PEFT have independently advanced the efficiency of LLMs, their combined applica-
tion remains underexplored. This thesis seeks to optimize LLMs through applying PEFT
methods to quantized models, aiming to replicate QLoRA’s (Dettmers et al. 2024) suc-
cess and assess its effectiveness and performance impact across different PEFT strategies
and LLMs. The experiments examine various combinations of these techniques, focusing
on their impact on model performance, memory efficiency, and computational overhead.
Using the LLaMa series as the base models, experiments were conducted across diverse
Natural Language Generation tasks to assess these combinations. The results reveal that
certain Quantization and PEFT pairings offer substantial improvements in efficiency
without significant loss of performance, highlighting the potential for these methods to
enable more practical deployment of large models in resource-constrained environments.
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1. Introduction

Recently, Large Language Models (LLMs), such as the GPT (Achiam et al. 2023),
LLaMa (Touvron et al. 2023), and Gemma (Team et al. 2024) series, have achieved
significant prominence and have become deeply integrated into various aspects of hu-
man life, representing a major advancement in Artificial Intelligence. LLMs approach
any Natural Language Processing (NLP) task as a text generation challenge, producing
the desired output by conditioning on both the input and the text generated so far.
LLMs have set new benchmarks in task generalization across a wide range of applica-
tions, including question answering, language translation, and summarization. These
models demonstrate the ability to learn and adapt through in-context task descriptions
or few-shot examples (Min et al. 2022), making them versatile across different domains.
This efficiency makes LLMs valuable tools in various domains, enhancing productivity
and decision-making. These models, rooted in Deep Learning (DL), are built on the
transformer architecture (Vaswani et al. 2017) and have been trained on vast amounts
of text data. This training of LLMs on large corpora of text is known as pre-training.
It enables the ability of LLMs to understand context and nuances and enables them to
proficiently handle diverse tasks as mentioned above.

Earlier studies have suggested that LLMs exhibit high levels of generalization, enabling
them to apply their acquired knowledge to new tasks not included in their original train-
ing (Brown et al. 2020). Nevertheless, to focus on more niche domains, LLMs can again
be trained on domain-specific datasets. This is known as fine-tuning. Fine-tuning plays
a crucial role in refining LLMs, enabling them to align more closely with desired behav-
iors, such as following instructions accurately (Ouyang et al. 2022) or adhering to specific
principles. By systematically exposing LLMs to extensive collections of task-specific in-
struction datasets, fine-tuning not only sharpens their instruction-following capabilities
but also enhances their scaling curve, leading to notable performance improvements on
various unseen downstream tasks (Wei et al. 2022) (Sanh et al. 2022) (Scialom et al.
2022).

The development and popularity of LLMs have made it crucial to fine-tune them
for different tasks. However, fine-tuning LLMs presents several significant challenges,
particularly concerning computational resources, memory requirements, and scalability.
LLMs consist of billions or trillions of parameters, making the process of fine-tuning
both computationally expensive and memory-intensive. This high resource demand of-
ten exceeds the capabilities of standard hardware, necessitating the use of specialized
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1. Introduction

infrastructure. Lastly, fine-tuning often involves updating a large portion of the model’s
parameters, which can create difficulties in maintaining efficiency during deployment,
particularly in memory-constrained environments. These challenges underscore the need
for more efficient fine-tuning methods, such as Parameter-Efficient Fine-Tuning (PEFT)
and quantization, which aim to mitigate these issues while preserving or enhancing model
performance (Ding et al. 2023) (Fu et al. 2023).

Several PEFT methods have been developed that update only a small fraction of
the total parameters in LLMs compared to the full set of pre-trained weights (Houlsby
et al. 2019) (Hu et al. 2021). These approaches significantly reduce the number of
learnable parameters, making the fine-tuning of LLMs more practical by minimizing the
memory footprint of the optimizer states. This reduction leads to lower memory usage
during training and facilitates the efficient storage and transfer of task-specific fine-tuned
parameters during deployment.

Nevertheless, LLMs still need a significant amount of memory even with PEFT, and
model compression techniques allow for even further optimizations. For example, as
highlighted by Hu et al. (Hu et al. 2021), the LoRA method can decrease the memory
required for fine-tuning GPT-3 175B from 1.2TB to 350GB. Despite this reduction, the
model still demands around 350GB of memory for storing parameters in half-precision
format, indicating the need for additional strategies to further reduce memory consump-
tion. Quantization has become a key strategy to address memory issues, especially while
using parameter-efficient fine-tuning techniques (Dettmers et al. 2022a). Quantization
is an effective technique for both compressing and accelerating neural networks by con-
verting parameters into low-bit integers while preserving a shared high-precision scale
within each parameter group. This approach reduces the model’s memory footprint
and computational demands, enabling more efficient deployment without significantly
compromising performance (Jacob et al. 2018).

1.1. Problem Statement

The rapid advancements in LLMs have been transformative, enabling breakthroughs
across various domains, from natural language understanding to content generation.
However, the sheer size of these models, often comprising billions of parameters, poses
significant challenges in terms of computational resources, storage, and deployment. To
address these issues, researchers have developed two key strategies: Parameter-Efficient
Fine-Tuning (PEFT) methods and quantization techniques.

While both PEFT and quantization have been extensively studied individually, there
is a noticeable gap in the research exploring the intersection of these two approaches.
Most studies focus on the application of PEFT to uncompressed, full-precision models,
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1. Introduction

or on quantization techniques applied to fully fine-tuned models. However, the com-
bined application of PEFT methods to quantized LLMs remains relatively unexplored.
The integration of Quantization and PEFT techniques is very crucial in this domain of
fine-tuning LLMs. QLoRA (Dettmers et al. 2024) is the state-of-the-art work in this
domain, introducing a quantization approach to LoRA, significantly enhancing the effi-
ciency of fine-tuning. This combination is crucial for enabling the efficient deployment
of large models in resource-constrained environments, such as edge devices or smaller
data centers. Despite the potential benefits, the existing literature lacks comprehensive
evaluations of how PEFT methods interact with different quantization schemes and how
this combination affects model performance across various tasks.

1.2. Contribution

This thesis seeks to optimize LLMs by applying PEFT to quantized models, aiming to
replicate QLoRA’s success and assess its effectiveness and performance impact across
different strategies and LLMs. The motivation behind these experiments is rooted from
the the growing need for efficient tuning and deployment of LLMs in resource-constrained
environments. It aims to fill the gap in research of combined application by conducting
a detailed study on the application of PEFT methods to quantized LLMs. The research
will evaluate multiple PEFT techniques across different quantization configurations, as-
sessing their impact on model performance, memory usage, and computational efficiency.
The primary objective of the experiments in the thesis is to evaluate the performance
and memory efficiency of different PEFT methods when applied to quantized LLMs. The
experiments encompass a variety of configurations and methodologies to provide a com-
prehensive analysis of the capabilities and trade-offs associated with each approach. By
addressing this unexplored intersection, the study seeks to provide valuable insights that
can guide the development of more efficient and scalable LLMs, ultimately contributing
to the broader field of AI research.

1.3. Thesis Structure

The thesis is organized into four main chapters. It begins with an overview of related con-
cepts and a comprehensive review of existing Quantization and PEFT techniques. The
following chapter explores the application of PEFT to quantized models, detailing the
methods used in the experiments. These experiments involve fine-tuning LLaMa models
with various Quantization and PEFT combinations, followed by a critical evaluation
based on factors such as quantization effects, trainable parameters, memory overhead,
memory footprint, runtime, perplexity, and performance on downstream tasks. The the-
sis concludes with a summary of findings and a discussion of future research directions.
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2. Background

This chapter provides a comprehensive overview of key concepts related to the thesis.
It begins with an exploration of language models and their various architectures in deep
learning. The focus then shifts to the Transformer architecture and the development of
large language models. The chapter also covers the concepts of pre-training and fine-
tuning, setting the stage for a discussion on Parameter-Efficient Fine-Tuning (PEFT)
methods. This is followed by an examination of quantization techniques. The chapter
concludes with a summary.

2.1. Language Models

Language modeling (LM) employs a range of statistical and probabilistic methods
to estimate the likelihood of specific word sequences within a sentence. By analyzing
textual data, language models can predict the probability of subsequent tokens, allowing
them to assess whether these sequences conform to typical grammatical patterns. At its
core, it calculates the probability of a word or sequence of words appearing in a sentence.
This is often achieved through the use of n-grams, which are continuous sequences of
n words from a given sample of text. For example, in a bigram model (where n=2),
the model would consider pairs of consecutive words to predict the likelihood of a word
following another (Brown et al. 1992). By doing so, statistical language models can
generate coherent text, perform tasks like text completion, and assist in various natural
language processing applications (Chen and Goodman 1999).

The probabilistic language model computes a probability distribution of a sentence
(s) of sequences of n words i.e.

p(s) = p(w1, w2, ....., wn)

= p(w1)p(w2|w1)p(w3|w1, w2)......p(wn|w1, .....wn−1)

=

n∏
i=1

p(wi|w1, ....., wi−1)

(2.1)

or compute the probability of an upcoming word i.e.

p(wt|w1, w2, ......, wt−1) (2.2)
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2. Background

Neural language models represent a significant advancement in natural language
processing by utilizing neural networks to predict and generate text. Unlike traditional
statistical models, neural language models leverage deep learning architectures, such
as recurrent neural networks (RNNs) and transformers, to capture complex patterns
and dependencies within language data (Mikolov et al. 2010) (Vaswani et al. 2017).
Large text datasets are used to train these models, which enable them to acquire high-
dimensional word representations called embeddings that capture syntactic and semantic
links. Through the use of layers of nonlinear transformations, neural language models
excel at generating coherent and contextually relevant text. This capability makes them
exceptionally powerful for a range of applications, including machine translation, text
summarization, and conversational agents (Devlin et al. 2018). While Feedforward neural
networks (FNNs) are simpler, they are less effective at capturing long-range dependencies
since they evaluate incoming data in a fixed-size context window (Bengio et al. 2000).
To counter these limitations, Recurrent Neural Networks were introduced.

Recurrent neural networks (RNNs) have been pivotal in advancing language
modelling due to their ability to handle sequential data and capture temporal depen-
dencies. Because RNNs keep track of a hidden state that is updated every time step, they
are especially well-suited for language applications where words’ meanings are greatly in-
fluenced by their context. However, the limitations of ordinary RNNs include vanishing
and exploding gradients, which make it difficult for them to learn long-term dependen-
cies (Bengio et al. 1994). To address these issues, architectures like Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) were developed, offering methods
to preserve information over longer periods (Hochreiter and Schmidhuber 1997) (Cho
et al. 2014).

Convolutional neural networks (CNNs), traditionally used in image processing,
have also been adapted for language modelling. CNNs utilize convolutional filters to
extract hierarchical structures and local patterns from textual input. This approach
allows CNNs to effectively handle varying lengths of input and capture n-gram-like fea-
tures, making them useful for tasks such as text classification (Kim 2014). By stacking
multiple convolutional layers, CNNs can capture increasingly complex patterns, provid-
ing a powerful alternative for certain natural language processing tasks (Grefenstette
et al. 2014). Although CNNs have done a decent job in NLP tasks, they have a couple of
drawbacks and hence have been unpopular in the domain. CNNs are designed to capture
local spatial relationships, but they have difficulty modeling long-range dependencies in
data. This can make them less effective for tasks that require an understanding of global
context or relationships between distant parts of an input.

Although RNNs were the state-of-the-art architecture for NLP-related tasks. These
models excelled at handling sequential data by maintaining a hidden state that could
capture dependencies across time steps. However, RNNs struggled with long-range de-
pendencies and required significant computational resources for training. The introduc-
tion of Pretrained Language Models (PLMs) marked a significant shift in NLP.
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2. Background

Pretrained language models have revolutionized natural language processing by
leveraging large-scale corpora to learn rich linguistic representations before being fine-
tuned for specific tasks. These models, such as BERT (Devlin et al. 2018), GPT (Radford
et al. 2018), and RoBERTa (Liu et al. 2019), undergo a two-stage training process:
pretraining on a diverse dataset to capture general language patterns, followed by fine-
tuning on task-specific data. These models are based on transformers (Vaswani et al.
2017), self-supervised learning, and transfer learning, have been pre-trained on a plethora
of text, and can now be adopted for any task even with a limited amount of data. By
capturing contextual information and semantic nuances, pre-trained language models
significantly reduce the need for task-specific labelled data and computational resources,
making them highly efficient and versatile tools in the field of NLP. Masked Language
Models (MLMs) and Causal Language Models (CLMs) are types of pre-trained language
models.

Masked language Models (MLMs) are a type of Pre-trained Language Model
which are trained by masking out certain words in a sentence and then predicting them
based on the surrounding context.The advantage of MLMs is their ability to capture
deep contextual relationships between words, enabling tasks like sentiment analysis,
question answering, and named entity recognition with high accuracy. However, MLMs
require large datasets and extensive computational resources for training, which may
not be feasible for smaller organizations. Additionally, their bidirectional nature makes
them unsuitable for text-generation tasks. One of the most famous examples is BERT.
BERT’s training approach is an advantage for understanding context, but it limits MLMs
in terms of versatility in generating sequential text, where a unidirectional model might
be more appropriate (Devlin et al. 2018) (Liu et al. 2019).

Causal Language Models (CLMs) or autoregressive models generate text sequen-
tially by predicting the next word in a sentence based on the previous words. Unlike
MLMs, CLMs generate text in a natural flow, making them ideal for tasks like text com-
pletion, dialogue generation, and creative writing. The main advantage of CLMs lies in
their generative capabilities, which enable them to produce coherent and contextually
relevant text. However, because they generate text based only on preceding words, they
may not capture the full context as effectively as MLMs. Additionally, their propensity
to produce plausible-sounding but incorrect information is a significant disadvantage,
especially in applications requiring high accuracy. GPT series is a prominent example
of CLM (Radford et al. 2019) (Brown et al. 2020).

Having covered the fundamentals of language models and their various types, the
following section delves into the core component that underpins the current state-of-the-
art in Language Models: Transformers. This section will explore the architecture, key
mechanisms, and advancements that have made Transformers the foundation for many
of today’s most powerful models.
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2. Background

2.2. Transformers

Transformers (Vaswani et al. 2017) have fundamentally transformed the landscape of
natural language processing (NLP) and are the core architecture behind many state-
of-the-art pre-trained language models. Transformers eliminate the need for RNNs by
employing a mechanism known as self-attention, which allows the model to weigh the
importance of different words in a sentence relative to one another. With this method,
transformers are better equipped to extract long-range dependencies and relationships
from the data.

Figure 2.1.: The Transformer model architecture. Image adapted from (Vaswani et al.
2017)

The transformer architecture’s self-attention mechanism is a key element. This process
is essential for capturing contextual relationships within the data, enabling more effective
language understanding. Each word in the input sequence is first converted into a vector
representation. For each word in the sequence, three vectors are calculated through linear
transformations of the input embeddings: the query vector (Q), the key vector (K), and
the value vector (V).

Q = XWQ,K = XWK , V = XWV (2.3)

where X is the input embedding matrix and WQ, WK , WV are the weight matrices for
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2. Background

query, key, and value, respectively.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.4)

where
√
dk is the dimension of the key vector k and query vector q .

By taking the dot product of the query vector of a single word and the key vectors of
every word in the sequence, the attention scores are computed. This operation indicates
how much focus each word should have on every other word. The attention scores are
then used to compute a weighted sum of the value vectors that represent the output for
each word, taking into account the importance of other words in the sequence.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.5)

where WO is the weight matrix for the output and

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2.6)

The transformer shown in Figure 2.1 consists mainly of two components: the encoder
and the decoder. A series of token plus positional embeddings, with each element in the
sequence representing a token, is fed into the encoder. The encoder then processes the in-
put sequence using a stack of identical encoder layers to produce a contextualized vector
representation for each input token. Each layer consists of multiple self-attention heads,
followed by a feedforward neural network. Transformers employ multi-head attention to
improve the model’s capacity to focus on several portions of the sequence at once. After
the multi-head attention mechanism, the output is passed through a feedforward neural
network. Transformers also use layer normalization and residual connections to stabilize
and improve training.

The last encoder layer’s output is fed into the decoder as input. Like the encoder, the
decoder is made up of a stack of layers that work together to produce complex, context-
aware tokens and input representations. Masked multi-head self-attention, encoder-
decoder attention, feed-forward neural networks, residual connections, and layer normal-
izations make up each decoder layer. The masked multiple attention heads allow them to
attend to the previously generated tokens and not over the future tokens. The encoder-
decoder attention mechanism enables the decoder to concentrate on relevant parts of the
input sequence produced by the encoder layer to produce the output sequence. At the
last layer of the decoder, a softmax activation plus a linear transformation provide the
probability distribution of each token becoming the next word in the sequence.
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2. Background

2.3. Large Language Models

Large Language Models (LLMs) have emerged as pivotal components in the field of NLP,
revolutionizing how machines understand and generate human language. LLMs are deep
learning models trained on vast amounts of text data, enabling them to capture intricate
patterns, semantics, and contextual nuances in language (Brown et al. 2020) (Radford
et al. 2019). These models, such as OpenAI’s GPT-4 (Achiam et al. 2023) and Google’s
BERT (Devlin et al. 2018), have set new benchmarks in various NLP tasks, including
text generation, translation, summarization, and question answering.

The development of LLMs is grounded in the transformer architecture that allows
LLMs to process entire sentences or documents at once, rather than sequentially, leading
to more coherent and contextually accurate language understanding and generation.

The primary benefit of LLMs lies in their ability to generalize across a wide range
of NLP tasks with minimal task-specific training. This generalization capability stems
from the extensive pretraining phase, where models are exposed to diverse text corpora,
learning a broad spectrum of language patterns and structures. As a result, LLMs can
be fine-tuned for specific tasks with relatively small datasets, significantly reducing the
time and resources required for model development.

Moreover, LLMs have demonstrated exceptional performance in generating human-like
text. This has enabled advancements in applications such as conversational agents, au-
tomated content creation, and personalized recommendations. For instance, GPT-4 has
been employed to draft emails, write code, and create poetry, showcasing its versatility
and creative potential. Additionally, LLMs contribute to improved machine translation
systems, where their ability to capture context leads to more accurate translations across
multiple languages.

LLMs stand out due to their large parameter counts, which usually range from billions
to trillions. As an example, GPT-3 (Brown et al. 2020) contains 175 billion parame-
ters, although more recent models scale up to over a trillion parameters (Kaplan et al.
2020). This scale allows LLMs to capture a wide array of linguistic nuances and world
knowledge, contributing to their ability to perform well across various tasks without
task-specific training.

Despite their numerous benefits, the development and deployment of LLMs come
with significant challenges, particularly related to the high computational and financial
costs of training these models. Training an LLM involves processing terabytes of text
data using sophisticated hardware, often necessitating the use of powerful GPUs. This
process can span several weeks or even months, depending on the model’s size and the
computational infrastructure available. For example, training GPT-3 was estimated
to involve thousands of GPUs running for several weeks, consuming a huge amount
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2. Background

of computing power (Narayanan et al. 2021). The financial cost associated with such
extensive training is substantial, with estimates suggesting that training GPT-3 might
have cost several million dollars.

Efforts are being made to mitigate these impacts by improving the efficiency of train-
ing algorithms and developing more energy-efficient hardware. However, the trade-off
between model performance and sustainability remains a pressing issue in the field.

2.4. Transfer Learning

One of the most important techniques used in deep learning is transfer learning. Transfer
learning is a machine learning technique where a model developed for a particular task is
reused as the starting point for a model on a second task. This approach is particularly
useful when the second task has limited labeled data but is related to the first task,
which typically has a large amount of labeled data (Pan and Yang 2009). It’s made up
of two components, pretraining and fine-tuning.

The core idea behind transfer learning is that certain features learned by a model on
a large dataset can be transferred and used for different but related tasks. For instance,
a model trained on a large image dataset to recognize everyday objects can be adapted
to identify specific types of objects, such as medical anomalies in radiographs, with
relatively few additional training examples. This reduces the need for extensive labeled
data and computational resources for the new task.

LLMs have revolutionized NLP through transfer learning. These models are pretrained
on vast corpora of text data, learning to predict words in a sentence, which captures a
wide range of linguistic features and knowledge. Then, these models can be fine-tuned
on specific downstream tasks such as sentiment analysis, question answering, or named
entity recognition, often with a small amount of task-specific data.

Pre-training involves training a model on a large dataset to learn general features.
In the context of LLMs, this usually means training on a diverse and extensive text
corpus to understand language patterns, semantics, and syntax. The objective is to
create a robust model that has captured the general structure and nuances of language.
The starting point is the model architecture, and all of the weights of the parameters
are random. The model has no knowledge of language, and you then pre-train the
model. This pretraining piece is very resource-heavy. Loads of data are required, and
this could include the entire Wikipedia corpus and a wide range of other corpora. Huge
computing power is another requirement. This is normally several hundreds to thousands
of hardware accelerators, depending on how quickly you want to train your model. And
these hardware accelerators are usually Nvidia’s GPUs or Google’s TPUs. At the end of
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this training, which can take days, weeks, or months, you have a model that has a very
good understanding of the language you’ve trained it on.

For example, BERT is pretrained using a masked language model (MLM) and next
sentence prediction (NSP) tasks. In MLM, random words in a sentence are masked, and
the model attempts to predict these masked words. In NSP, the model predicts if a given
pair of sentences follow each other in the original text, helping the model understand
sentence relationships (Devlin et al. 2018) (Radford et al. 2018).

Fine-tuning is the process of taking a pretrained model and training it further on a
specific task with a relatively smaller dataset. This step adjusts the model’s parameters
minimally to specialize it for the new task, leveraging the general knowledge obtained
during pretraining.

In the context of LLMs, fine-tuning involves training the model on a specific NLP
task, such as sentiment analysis or machine translation. During fine-tuning, the model
parameters are updated to improve performance on the target task, but the changes
are typically small compared to the pretraining phase. This allows the model to retain
its broad linguistic knowledge while adapting to the specific nuances of the task at
hand (Howard and Ruder 2018) (Sun et al. 2019). Transfer learning, through pretraining
and fine-tuning, has become a cornerstone of modern machine learning, particularly
in NLP with LLMs. This approach significantly reduces the time and computational
resources required to develop high-performing models for a wide range of applications.

2.5. Parameter-Efficient Fine-Tuning (PEFT)

The rapid advancement of large language models (LLMs) has significantly impacted
various domains in natural language processing (NLP), including machine translation,
disease prediction, code generation for robotics, and chatbot assistance. LLMs, which
have billions of parameters, present a lot of issues when it comes to memory usage,
processing expenses, and environmental effects during the deployment and fine-tuning
stages (Wei et al. 2022) (Ouyang et al. 2022) (Chang et al. 2024). In response to
this need, the development of Parameter-Efficient Fine-Tuning (PEFT) approaches has
become important, enabling significant reductions in the resources required for model
fine-tuning while maintaining and sometimes even improving model performance.

Traditional fine-tuning involves updating all parameters of a model, which can be
resource-intensive and impractical for very large models. PEFT methods address this
challenge by selectively updating a small subset of parameters, thereby preserving the
bulk of the pre-trained weights and drastically reducing the amount of memory and
computational power required. These methods help overcome the practical difficulties
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associated with dealing with large models that have billions of parameters, such as
memory and processing limitations, overfitting risk, environmental effects, and the re-
quirement for model customization (Ding et al. 2023) (Fu et al. 2023). Various methods
under the umbrella of PEFT have been proposed, each with its unique mechanism for
achieving parameter efficiency.

This section will explore various PEFT methods, focusing on those developed for
LLMs but also extending to other domains such as computer vision. We will review in-
novative techniques like LoRA, Prompt Tuning, and DoRA, among others, highlighting
their unique approaches to parameter efficiency and their impact on model performance.
Through this comprehensive review, we aim to provide a broad understanding of the
state-of-the-art in PEFT and its implications for future research and practical applica-
tions.

2.5.1. Adapter-Based Methods

Adapter-based PEFT methods enable efficient fine-tuning of large pre-trained models
by introducing lightweight, task-specific modules while keeping most of the model pa-
rameters frozen. This subsection focuses on a selection of these techniques.

Figure 2.2.: Architecture of the adapter module and its integration with the Transformer.
During adapter tuning, the green layers are trained on the downstream data,
this includes the adapter, the layer normalization parameters, and the final
classification layer (not shown in the figure). Image and caption adapted
from (Houlsby et al. 2019).

One of the earliest and most influential PEFT methods is Adapter tuning, introduced
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by Houlsby et al. (Houlsby et al. 2019). Adapter modules are small neural networks
inserted within each layer of the pre-trained model as shown in figure 2.2, enabling task-
specific fine-tuning without updating the entire model’s parameters. This technique sig-
nificantly reduces the number of trainable parameters, allowing efficient transfer learning
with minimal computational resources. The primary benefit of this method lies in its
ability to achieve comparable performance to full fine-tuning while only adjusting a frac-
tion of the model’s parameters. Specifically, adapters can reduce the number of trainable
parameters by over 95%, resulting in faster training times and lower memory require-
ments. This makes it feasible to deploy and fine-tune LLMs in resource-constrained
environments, facilitating broader accessibility and practical application of advanced
NLP technologies.

Method Key Characteristic

Adapter Tuning Task Specific Layers inserted into Transformers for tuning

Compacter Uses Low-Rank Factorization with hypercomplex multiplications

HyperFormer Generates adapter parameters using a shared network that adjusts
for each task

IA3 Uses learned scaling vectors, focusing on modifying only attention
matrices

HyperX Uses a single Hypernetwork that generates adapter parameters

LoRA Introduces trainable Low-rank matrices while the rest of the model
is frozen

DyLoRA Dynamically adjusts LoRA across a range of ranks

O-LoRA Uses Orthogonal Subspaces to prevent catastrophic forgetting

LoRAPrune Combines LoRA with parameter pruning

RsLoRA Improves LoRA by stabilizing gradient scaling, enabling higher-
rank fine-tuning

NOLA Represents model updates as Linear combination of low-rank ran-
dom bases

LongLoRA Extends LoRA for long context models using shifted sparse atten-
tion

VeRA Leverages vector-based decomposition of random shared matrices

LoRAShear Integrates structured pruning using dependency graphs and dy-
namic fine-tuning

DoRA Enhances LoRA by decomposing pre-trained weights into magni-
tude and direction

Table 2.1.: Overview of Adapter Based PEFT methods
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Mahabadi et al. presented a method called Compacter (Karimi Mahabadi et al. 2021),
which significantly enhances the efficiency of fine-tuning large language models. Com-
pacter combines ideas from adapters, low-rank optimization, and hypercomplex mul-
tiplication layers. It introduces task-specific weight matrices computed as the sum of
Kronecker products between shared ”slow” weights and ”fast” rank-one matrices. This
method trains only a fraction of the model’s parameters, approximately 0.1%, while
achieving performance on par with full fine-tuning on benchmarks like GLUE (Gen-
eral Language Understanding Evaluation) and SuperGLUE. Compacter’s innovative ap-
proach enables substantial reductions in the number of trainable parameters and com-
putational resources, making it highly efficient for adapting large-scale language models
to new tasks.

Later the same year, Mahabadi et al. introduced another innovative approach to fine-
tuning large language models for multiple tasks simultaneously. This method, known as
HyperFormer (Karimi Mahabadi et al. 2021), employs shared hypernetworks to generate
task-specific adapter parameters conditioned on task, adapter position, and layer ID. By
leveraging these hypernetworks, HyperFormer efficiently shares information across tasks,
significantly reducing the number of parameters needed for fine-tuning. This approach
allows for positive transfer effects between related tasks while minimizing negative inter-
ference. Experiments on the GLUE benchmark demonstrate that HyperFormer not only
outperforms traditional adapter-based methods but also achieves substantial parame-
ter efficiency, making it a highly effective solution for multi-task learning in resource-
constrained environments.

In their 2022 paper, Liu et al. critically evaluated the dominant methods in few-shot
learning, contrasting PEFT techniques with in-context learning (ICL) (Liu et al. 2022).
The authors present (IA)³, a novel parameter-efficient fine-tuning method that scales
intermediate activations with learned vectors. This approach significantly reduces the
number of trainable parameters—by up to 10,000 times—while achieving superior per-
formance. The authors also introduce T-Few, a recipe based on the T0 model, which
integrates (IA)³ and demonstrates exceptional performance on unseen tasks, surpassing
ICL and even achieving super-human performance on the RAFT (Real-world Anno-
tated Few-shot Tasks) benchmark. This method addresses the high computational and
memory costs associated with ICL, offering a scalable and cost-effective alternative for
adapting pre-trained models to new tasks with minimal data.

Hyper-X is a unified hypernetwork designed for efficient multi-task and multilingual
transfer learning (Üstün et al. 2022). Hyper-X generates task and language-specific
adapter parameters through a shared hypernetwork, which enables it to handle multiple
tasks and languages simultaneously. This innovative approach conditions the hyper-
network on task, language, and layer embeddings, allowing it to adapt to new, unseen
task-language pairs during inference. Hyper-X leverages masked language modeling
(MLM) as an auxiliary task, enhancing its zero-shot transfer capabilities to languages
not included during pre-training. The model demonstrates significant improvements over
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traditional adapter-based methods, particularly in mixed-language multi-task settings,
achieving competitive performance with fewer parameters and reduced training time.
This makes Hyper-X a robust and scalable solution for deploying pre-trained models
across diverse linguistic and task-specific contexts.

Low-rank Adaptation (LoRA) (Hu et al. 2021) is a PEFT method that modifies LLMs
by adding a small subset of parameters that use low-rank matrices to capture the es-
sential information. LoRA addresses the challenge of the prohibitive computational cost
associated with fine-tuning all model parameters by freezing the original model weights
and injecting trainable low-rank decomposition matrices into each layer of the Trans-
former architecture. A high-level overview of how LoRA looks is displayed in Figure 2.3.
It operates on the principle of low-rank matrix approximation, a mathematical approach
that represents a high-dimensional matrix using the product of two lower-dimensional
matrices. LoRA focuses on adjusting the added low-rank matrices (A & B). The updated
low-rank matrices are combined to reconstruct the full-weight matrices, incorporating
task-specific knowledge into the model with minimal parameter updates. This process
effectively captures the essential information required for the new task without the need
to retrain the entire model, leading to significant reductions in computational resources
and memory requirements. LoRA significantly reduces the number of trainable param-
eters required for fine-tuning. Specifically, it can lower the parameter count by a factor
of up to 10,000 compared to traditional fine-tuning methods, while also reducing GPU
memory requirements by a factor of three. This is achieved without compromising model
performance. Empirical results demonstrate that LoRA can perform on par or even bet-
ter than full fine-tuning across various models such as RoBERTa, DeBERTa, GPT-2,
and GPT-3.
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Figure 2.3.: Architecture of LoRA. The pretrained weights W are kept frozen and only
the A and B matrices are updated during fine-tuning. Image adapted
from (Hu et al. 2021).

One of the key advantages of LoRA is that it does not introduce additional inference
latency, unlike adapter-based methods. This is because the low-rank updates can be pre-
computed and added to the frozen weights, allowing the model to operate at the same
speed as a fully fine-tuned model during inference. Additionally, LoRA facilitates a more
flexible and modular approach to model adaptation, enabling efficient task switching by
simply applying different low-rank matrices for different tasks. The effectiveness of LoRA
is rooted in its ability to leverage the low ”intrinsic rank” of updates necessary for task
adaptation. This insight allows LoRA to maintain the expressiveness of the original
model while dramatically reducing the computational overhead. The authors provide
a comprehensive analysis of the rank-deficiency in language model adaptations, which
supports the efficacy of their approach. LoRA’s practical benefits and robust perfor-
mance make it a powerful tool for scaling large language models to diverse applications
without incurring substantial computational costs.

DyLoRA, introduced in 2022, is a method designed to address the limitations of fixed-
rank low-rank adapters in pre-trained language models (Valipour et al. 2022). Tradi-
tional LoRA techniques require selecting a specific rank for adaptation, a process that
often necessitates exhaustive search and retraining for different rank configurations. Dy-
LoRA overcomes this by dynamically adjusting the rank during training, eliminating the
need for predefined ranks and enabling a single model to adapt across a range of ranks
without retraining. This flexibility is achieved by sorting the representation learned
at different ranks and using a stochastic sampling approach to update the model dur-
ing training. Evaluations on tasks such as the GLUE benchmark and various natural
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language generation tasks show that DyLoRA can achieve comparable performance to
traditional LoRA methods while significantly reducing training time and computational
overhead. By enabling efficient and flexible rank adaptation, DyLoRA presents a robust
solution for parameter-efficient tuning in resource-constrained environments.

Xiao Wang and colleagues proposed Orthogonal Low-Rank Adaptation (O-LoRA) (Wang
et al. 2023), a method aimed at addressing catastrophic forgetting in continual learn-
ing for LLMs. O-LoRA leverages the LoRA framework, adapting new tasks within
orthogonal subspaces to the subspaces of previous tasks. This orthogonal constraint en-
sures minimal interference between tasks, preserving learned knowledge while enabling
efficient new task learning. Unlike other methods requiring data storage or extensive
parameter updates, O-LoRA achieves high efficiency with marginal additional parame-
ter costs. Experiments on standard benchmarks demonstrate that O-LoRA outperforms
existing continual learning methods, maintaining robust performance and generalization
on unseen tasks.

Zhang et al. introduced LoRAPrune (Zhang et al. 2024), a method combining struc-
tured pruning and LoRA for efficient fine-tuning of large pre-trained models. LoRAPrune
uses LoRA-guided pruning to reduce memory and computational costs while maintain-
ing high performance. This approach prunes redundant channels and heads, optimizing
model size and complexity. Experiments on models like LLaMA showed that LoRAPrune
significantly reduces memory overhead and outperforms traditional methods in perplex-
ity reduction on various datasets.

In 2023, Kalajdzievski introduced a modification to the LoRA method called rank-
stabilized LoRA (rsLoRA) (Kalajdzievski 2023). This technique addresses the issue of
gradient collapse in standard LoRA when higher-rank adapters are used. By dividing
LoRA adapters by the square root of their rank rather than the rank itself, rsLoRA en-
sures stable learning and improved performance with larger ranks. Experimental results
indicate that rsLoRA outperforms traditional LoRA, particularly in scenarios where in-
creased computational resources are available for fine-tuning. This advancement allows
for more efficient and effective adaptation of large language models without compromis-
ing on inference speed or performance.

Koohpayegani and colleagues introduced NOLA (Networks as Linear Combination of
Low-Rank Random Basis), a method designed to enhance the parameter efficiency of
LoRA by overcoming its inherent limitations (Koohpayegani, Navaneet, Nooralinejad,
Kolouri, and Pirsiavash Koohpayegani et al.). NOLA reparameterizes the low-rank
matrices in LoRA using linear combinations of randomly generated matrices (basis).
This approach decouples the number of trainable parameters from both the rank and
network architecture, enabling higher compression ratios while maintaining performance.
By optimizing only the linear mixture coefficients of these random matrices, NOLA
achieves significant parameter reductions and demonstrates superior results on both
natural language and computer vision tasks. The method’s efficiency is highlighted
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in its ability to halve the parameters of larger models compared to LoRA, without
sacrificing performance, thereby offering a scalable and efficient solution for fine-tuning
large pre-trained models.

Figure 2.4.: Overview of LongLoRA. Introduces Shifted Sparse Attention during fine-
tuning. In addition to training LoRA weights in linear layers, LongLoRA
further makes embedding and normalization layers trainable. This extension
is pivotal for context extension and only introduces a minimal number of
additional trainable parameters. Image and Caption adapted from (Chen
et al. 2023).

Chen et al. tackled the challenge of efficiently fine-tuning language models for ap-
plications that require processing long contexts by developing LongLoRA (Chen et al.
2023). LongLoRA employs a two-pronged approach: the Shifted Sparse Attention (S2-
Attn) mechanism during fine-tuning, which reduces computation by splitting attention
into local groups with shifted tokens, and the integration of trainable embeddings and
normalization layers to enhance long-context adaptation. This combination allows Lon-
gLoRA to significantly reduce memory costs and training time while maintaining high
performance. Experiments demonstrated LongLoRA’s ability to extend context lengths
to 100k tokens on models like LLaMA2 with up to 70 billion parameters, providing a
scalable solution for handling long sequences in LLMs without compromising efficiency.

In their recent work, Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano in-
troduced VeRA, an advanced method that enhances parameter efficiency in fine-tuning
LLMs (Kopiczko et al. 2024). Unlike traditional LoRA, VeRA employs a pair of frozen
low-rank matrices shared across all layers and adapts these matrices using trainable scal-
ing vectors. The comparison between LoRA and VeRA is visually represented in Figure
2.5. This approach drastically reduces the number of trainable parameters while main-
taining model performance. VeRA’s efficacy was demonstrated across various bench-
marks, including GLUE and E2E, and tasks such as instruction tuning for LLaMA mod-
els and image classification. By addressing the storage and computational challenges
associated with large-scale model adaptation, VeRA presents a scalable and efficient
solution for fine-tuning pre-trained models in diverse applications.
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Figure 2.5.: Comparision of LoRA (left) and VeRA (right). LoRA updates the weights
matrix W by training the low-rank matrices A and B, with intermediate
rank r. In VeRA these matrices are frozen, shared across all layers, and
adapted with trainable vectors d and b, substantially reducing the number
of trainable parameters. Image and Caption adapted from (Kopiczko et al.
2024).

In a recent study, Tianyi Chen and colleagues proposed LoRAShear (Chen et al. 2023),
a method designed for the structured pruning of LLMs with a focus on knowledge re-
tention. LoRAShear employs a novel LoRA Half-Space Projected Gradient (LHSPG)
technique to progressively prune less essential structures while transferring their knowl-
edge to more critical components. This approach not only reduces the model’s size
by up to 50% but also preserves up to 82% of its original performance. By analyzing
dependency graphs and utilizing dynamic knowledge recovery, LoRAShear effectively
mitigates the trade-off between model compression and performance degradation, signif-
icantly outperforming existing pruning methods in computational efficiency and accuracy
recovery.

In 2024, Liu et al. introduced DoRA (Weight-Decomposed Low-Rank Adaptation) (Liu
et al. 2024), a method enhancing LoRA by decomposing pre-trained weights into mag-
nitude and directional components. This decomposition allows for efficient fine-tuning
by leveraging LoRA for directional updates and maintaining the magnitude component.
DoRA’s novel approach ensures high learning capacity, closely resembling full fine-tuning
without additional inference overhead. Empirical results demonstrate DoRA’s superior
performance over traditional LoRA across various tasks, including commonsense reason-
ing and visual instruction tuning, highlighting its efficiency and robustness in parameter-
efficient fine-tuning.
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2.5.2. Token-Based Methods

Token-based parameter-efficient fine-tuning methods focus on optimizing specific token
embeddings or representations within a pre-trained model rather than modifying the
entire model’s parameters. This subsection focuses on a selection of these techniques.

Method Key Characteristic

Prefix Tuning Optimizes continuous task-specific prefixes

Prompt Tuning Tunes continuous, trainable vectors added to the input embeddings
(soft prompts)

Input Tuning Optimizes task-specific continuous embeddings in the model’s in-
put layer

PaSTA Focuses on updating special tokens like [CLS] and [SEP]

KnowPrompt Improves prompt tuning by adding learnable key elements in
prompt

DePT Splits soft prompts into shorter prompt and low-rank matrices

Table 2.2.: Overview of Token Based PEFT methods

Li and Liang introduced an approach termed prefix-tuning, which provides a parameter-
efficient method for fine-tuning large pre-trained models on generative tasks (Li and
Liang 2021). This method freezes the parameters of the pre-trained language model and
instead optimizes a small, continuous task-specific vector called the prefix. These prefixes
are prepended to the input tokens, allowing subsequent tokens to attend to them as if
they were virtual tokens. The primary benefit of prefix-tuning is its efficiency: it requires
tuning only 0.1% of the model’s parameters, significantly reducing the computational
and storage overhead compared to full model fine-tuning. Empirical results demonstrate
that prefix-tuning achieves performance comparable to full fine-tuning in full-data set-
tings and even outperforms it in low-data scenarios, making it a highly effective and
resource-efficient method for adapting large language models to specific tasks.
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Figure 2.6.: Fine-tuning (top) updates all parameters (the red Transformer box) and
requires storing a full model copy for each task. Prefix-tuning (bottom),
freezes the Transformer parameters and only optimizes the prefix (the red
prefix blocks). Consequently, only needed to store the prefix for each
task, making prefix-tuning modular and space-efficient. Image and Cap-
tion adapted from (Li and Liang 2021).

In their 2021 study, Lester et al. explored the scalability of prompt tuning (Lester
et al. 2021), a parameter-efficient method that adapts large language models like T5
by training only a small set of soft prompts instead of the entire model. This method
maintains the efficiency of using a single pre-trained model across multiple tasks while
significantly reducing the number of trainable parameters. The authors demonstrate that
prompt tuning can achieve performance comparable to full model tuning, particularly as
model size increases. For instance, prompt tuning with large models, such as T5-XXL,
matches the quality of full model tuning while using orders of magnitude fewer task-
specific parameters. This approach is especially advantageous in scenarios requiring
the deployment of multiple task-specific models, as it simplifies storage and reduces
computational overhead, making it a highly efficient solution for practical applications.

In 2022, An et al. introduced Input-Tuning (An et al. 2022), a method designed to
enhance prompt-tuning by effectively handling unfamiliar inputs for natural language
generation (NLG) tasks. Unlike traditional prompt-tuning, which struggles with inputs
that differ significantly from the pretraining corpus, Input-Tuning employs a lightweight
trainable module, called an input-adapter, placed between word embeddings and the
model’s input layer. This module transforms the input embeddings to better align with
the pre-trained model’s representations. The approach bridges the performance gap
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between prompt-tuning and fine-tuning, achieving superior results on seven NLG tasks,
and demonstrating that Input-Tuning can significantly outperform prompt-tuning and
even rival fine-tuning in certain cases. This innovative method ensures that pre-trained
language models can be more effectively adapted to a wide range of tasks with diverse
input types, making it a robust solution for improving model performance in low-resource
and varied input scenarios.

Xiaocong Yang et. al introduced Parameter-Efficient Tuning with Special Token Adap-
tation (PaSTA) (Yang et al. 2023). This method focuses on adapting special token
representations, such as [CLS] and [SEP] in BERT, rather than modifying the entire
model’s parameters. By only adding trainable vectors to the hidden representations of
these tokens before the self-attention module at each layer, PaSTA achieves parameter
efficiency without sacrificing performance. With only up to 0.029% of the total pa-
rameters trained, PaSTA matches the effectiveness of full fine-tuning in tasks like text
classification and named entity recognition. This approach underscores the critical role
of special tokens in pre-trained language models and offers a scalable solution for multi-
task, memory-limited scenarios, facilitating efficient adaptation across diverse tasks and
datasets.

KnowPrompt (Chen et al. 2022), by Chen et al., is a method that enhances prompt-
tuning for relation extraction by incorporating knowledge-aware elements. The authors
propose using learnable virtual type words and answer words that integrate semantic
knowledge from relation labels into the prompt construction process. KnowPrompt syn-
ergistically optimizes these elements with structured constraints, enabling the model
to leverage implicit structural knowledge among relational triples. This approach sig-
nificantly improves the performance of prompt-tuning, particularly in low-resource set-
tings, by dynamically adjusting virtual words based on context, thus ensuring robust
and accurate relation extraction. Experimental results on multiple datasets demonstrate
that KnowPrompt outperforms existing methods, achieving state-of-the-art results while
maintaining efficiency in parameter tuning and computational requirements.

In their 2023 paper, Zhengxiang Shi and Aldo Lipani introduced DePT, a method de-
signed to optimize the prompt tuning approach by decomposing the soft prompt into a
shorter prompt and a pair of low-rank matrices (Shi and Lipani 2024). This decomposi-
tion significantly reduces the input sequence length, thereby cutting down computational
costs associated with training and inference in transformer models. DePT employs two
distinct learning rates for the prompt and the low-rank matrices, enhancing convergence
and efficiency. Experimental results across 23 NLP and vision-language tasks demon-
strate that DePT outperforms existing PEFT methods, including vanilla prompt tuning
and even full fine-tuning in some scenarios. The method shows particular promise in
scaling efficiency as the model size increases, making it highly suitable for LLMs.
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2.5.3. Other PEFT Methods

This section highlights PEFT methods that target different parts of a neural network or
employ unique techniques compared to the previously discussed approaches.

Method Key Characteristic

Trained Rank Pruning Pushes network weights into a low-rank form

Scatterbrain Leverages Sparse Attention with learned token inter-
actions

DSEE Combines Low-rank updates and sparse weight struc-
tures

Mixture of Experts Uses Matrix Product Operator decomposition to
share parameters

Scaling & Shifting Features Adjusts deep features with linear transformations

BitFit Fine-tunes only the bias terms of the model

BOFT Applies Orthogonal Transformations to bitwise fea-
tures

Table 2.3.: Overview of other PEFT methods

Yuhui et al. introduced a method known as Trained Rank Pruning (TRP) to enhance
the efficiency of deep neural networks (Xu et al. 2019). The authors propose a technique
that integrates low-rank approximation and pruning directly into the training process.
Trained Rank Pruning aims to simplify the weight matrices by reducing their rank, es-
sentially trimming down the complexity of the model. The key idea is to do this pruning
during the training process, so the model learns which parts of the matrix are most im-
portant and which can be removed without significantly affecting its performance. This
method leverages the singular value decomposition (SVD) of weight matrices, iteratively
pruning less significant singular values while retaining the crucial components that pre-
serve the network’s performance. TRP effectively reduces the number of parameters
and computational overhead, achieving up to a 90% reduction in parameters without
significant loss of accuracy. The primary advantage of TRP lies in its ability to maintain
the capacity and discriminative power of the original network by dynamically adapt-
ing the rank during training, ensuring efficient compression and minimal performance
degradation.

Scatterbrain (Chen et al. 2021) is an approach to combining sparse attention with
learned token interactions. Traditional methods often utilize either sparsity or low-rank
properties of attention matrices to mitigate the computational and memory bottlenecks
associated with modeling long sequences. However, these methods individually excel in
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different regimes based on the softmax temperature, which can limit their effectiveness.
Chen et al. address this by integrating both sparse and low-rank approximations, lever-
aging the strengths of each. ScatterBrain uses sparse attention by selectively focusing
on a subset of tokens, using low-rank approximation, rather than processing all tokens
at each attention layer. This approach reduces the computational load by concentrating
resources on the most relevant parts of the input. By combining sparse attention with
this learned token prioritization, ScatterBrain efficiently manages long sequences while
maintaining strong performance and reducing memory usage. This combination allows
for more accurate and efficient attention approximations. Empirical results show that
Scatterbrain can achieve up to 2.1 times lower error than existing baselines when used
as a drop-in replacement in tasks like BigGAN image generation and pre-trained T2T
Vision Transformer (T2T-ViT). Notably, on the T2T-ViT model, Scatterbrain reduces
98% of attention memory with only a 1% drop in accuracy. Furthermore, it improves
perplexity by up to 4 points and average accuracy by 5 points over sparse or low-rank
efficient Transformers in language modeling and long-range arena tasks, demonstrating
its efficacy in both training and inference scenarios.

Xuxi Chen et al. introduced Dually Sparsity-embedded Efficient Tuning (DSEE), a
framework aimed at enhancing both parameter- and resource-efficiency during the fine-
tuning of pre-trained language models (Chen et al. 2023). DSEE leverages the sparsity
prior in weight updates and final model weights to achieve these goals. Specifically,
the method integrates sparsity-aware low-rank updates during the fine-tuning process
and enforces a sparse weight structure in the final model. This dual approach ensures
that both the training and inference phases benefit from reduced computational require-
ments and memory usage. By incorporating both unstructured and structured sparsity
patterns, DSEE significantly cuts down on the number of trainable parameters and im-
proves inference efficiency. Extensive experiments on models like BERT, GPT-2, and
RoBERTa across various datasets demonstrate that DSEE maintains competitive per-
formance while achieving substantial reductions in parameter count and computational
overhead, thereby making it a robust solution for efficient model deployment in resource-
constrained environments.

In 2022, a parameter-efficient Mixture-of-Experts (MoE) architecture was designed to
enhance the capacity of pre-trained language models without a proportional increase in
parameters (Gao et al. 2022). This method, termed MPOE (Matrix Product Operator-
based Expert), employs a tensor decomposition technique from quantum many-body
physics to reduce parameter redundancy across experts. By sharing a global central
tensor among different experts and allowing task-specific adaptations through auxiliary
tensors, MPOE significantly lowers the parameter count while maintaining or even im-
proving performance. The authors also introduce a gradient mask strategy to address
unbalanced optimization, ensuring efficient training. Extensive experiments with models
like T5 and GPT-2 demonstrate that MPOE achieves a 27.2x reduction in parameters
compared to traditional MoE setups, making it a powerful solution for scaling large
models efficiently.
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A novel PEFT method called Scaling and Shifting Features (SSF) was introduced
by Lian et al (Lian et al. 2022). Unlike traditional fine-tuning that updates all model
parameters, SSF adjusts the deep features of a pre-trained model using linear transfor-
mations (scaling and shifting) to adapt the model to new tasks without adding extra
parameters or increasing computational complexity during inference. This approach sim-
plifies fine-tuning by modifying only the feature space, making it both resource-efficient
and effective. SSF is particularly advantageous for scenarios requiring rapid adapta-
tion with minimal overhead, providing a strong alternative to more complex methods.
This method significantly reduces the number of trainable parameters—only about 0.3M
compared to the full model’s parameters. SSF demonstrates superior performance across
various tasks, achieving higher accuracy than full fine-tuning in benchmarks like FGVC
and VTAB-1k. The key advantage of SSF lies in its ability to maintain performance
while eliminating additional inference costs, making it highly efficient for deployment in
resource-constrained environments.

Ben-Zaken et al. proposed BitFit (Zaken et al. 2021), a PEFT method focusing exclu-
sively on the bias terms of Transformer-based models. Unlike conventional fine-tuning,
which adjusts all model parameters, BitFit modifies only the bias terms while freezing
the rest. This approach dramatically reduces the number of trainable parameters—down
to 0.08%—while maintaining comparable performance to full fine-tuning. BitFit is par-
ticularly effective in low-data regimes and memory-constrained environments, making it
a practical solution for multi-task fine-tuning. The method’s simplicity and efficiency
provide new insights into the role of bias terms in pre-trained models and open up
possibilities for hardware-friendly model implementations.

A novel parameter-efficient finetuning method known as Orthogonal Butterfly Fine-
tuning (BOFT) was introduced by a group of researchers (Liu et al. 2024). This method
builds upon traditional orthogonal finetuning (OFT) by employing a butterfly factor-
ization to achieve a more efficient representation of orthogonal matrices as shown in
Figure 2.7. The butterfly structure allows for the composition of dense orthogonal ma-
trices from multiple sparse matrices, significantly reducing the number of parameters
required. OFT itself operates by reparameterizing the weight matrices of neural net-
works as the product of orthogonal matrices and the original weights. This approach
helps preserve the angular relationships between neurons, which is crucial for maintaining
the semantic integrity of the pre-trained model during finetuning. However, the original
OFT methods often rely on block-diagonal structures, which can be less efficient. BOFT
addresses this inefficiency by leveraging butterfly matrices, known for their effectiveness
in fast Fourier transforms and efficient matrix-vector multiplications. This factorization
not only maintains the orthogonal properties essential for stable and effective finetuning
but also reduces the computational and memory overhead associated with large-scale
models. Experiments demonstrated that BOFT could achieve competitive performance
on various downstream tasks while significantly reducing the parameter count compared
to traditional finetuning methods. By integrating the butterfly factorization, BOFT
presents a scalable and efficient solution for adapting large pre-trained models to new
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tasks, making it an essential advancement in the field of parameter-efficient fine-tuning.

Figure 2.7.: BOFT uses the butterfly factorization to parameterize the orthogonal ma-
trix, which yields a dense orthogonal matrix (in contrast, OFT has to use
a sparse block-diagonal orthogonal matrix to reduce the number of train-
able parameters). The butterfly parameterization of orthogonal matrices
naturally generalizes the original OFT framework where the block-diagonal
structure now becomes a special case of BOFT. Image and Caption adapted
from (Liu et al. 2024).

In summary, the literature on PEFT methods is vast and continually evolving, with
numerous techniques tailored to enhance the efficiency of fine-tuning large pre-trained
models across various tasks. While this section has highlighted several notable methods,
there are many more innovative approaches in the field. In the subsequent experiments,
we will explore a select few PEFT methods to demonstrate their practical applications
and effectiveness. Based on its popularity and usage in practical applications, LoRA has
been a standout PEFT method. It is simple, efficient, and effective. It maintains high
performance with minimal computational and memory overhead. It integrates seamlessly
with existing models, adding no extra inference latency, which makes it versatile and
widely applicable across various tasks and model architectures.

Moving forward, the next section will delve into Quantization, another crucial aspect
of optimizing large language models for resource-efficient deployment.
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2.6. Quantization

Quantization is a technique used in neural networks to reduce the precision of the num-
bers that represent the model’s parameters, activations, or both, thereby decreasing the
model’s memory footprint and computational requirements. his process involves con-
verting high-precision (typically 32-bit floating-point) numbers to lower-precision for-
mats such as 16-bit, 8-bit, or even 4-bit integers. The primary goal of quantization is to
reduce the computational and memory requirements of the model, making it more effi-
cient to deploy and execute on hardware with limited resources, such as mobile devices
and embedded systems.

As neural networks, particularly LLMs like GPT-3 and LLaMa, have grown in size
and complexity, the need for efficient deployment has become increasingly critical. These
models often consist of billions of parameters, leading to substantial demands on mem-
ory and computational power. This has led to a surge in research focused on making
these models more efficient and accessible. Quantization addresses these challenges by
significantly reducing the model size and the amount of computation required during
inference. This reduction not only enables the deployment of large models on resource-
constrained devices but also speeds up inference and reduces power consumption (Jacob
et al. 2018). Quantization has become a key strategy to address memory issues, espe-
cially in parameter-efficient fine-tuning techniques (Dettmers et al. 2022b). By reducing
the memory requirements and computational costs, quantization makes it feasible for
researchers with limited resources to fine-tune large models.

There are two main categories of quantization techniques in deep learning:

• Post-Training Quantization: Applied only during inference, this method con-
verts model weights and activations to lower precision (e.g., 8-bit) after full-
precision training, reducing memory and computational costs without retraining.

• Quantization-Aware Training (QAT): Used during training, this method sim-
ulates quantization effects by incorporating low-precision operations in the train-
ing loop, leading to models that perform well even after quantization at inference,
thereby minimizing accuracy loss.

Quantization is especially crucial for large models due to several reasons:

• Resource Constraints: Deploying large models on devices with limited memory
and processing power requires reducing the model’s footprint.

• Scalability: Quantization allows for the deployment of multiple instances of the
model on the same hardware, enhancing scalability.
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• Inference Speed: Lower precision arithmetic can be performed faster, thus speed-
ing up the inference process.

• Energy Efficiency: Reduced precision operations consume less power, which is
vital for battery-operated devices.

The next parts will review various quantization techniques employed to optimize
large models. This review will examine each approach, post-training quantization,
and quantization-aware training in detail. Each technique offers unique advantages and
trade-offs, providing a spectrum of options to balance model performance with efficiency.

2.6.1. Quantization Aware Training

An important development by Micikevicius et al. is the application of mixed-precision
training, which uses higher precision (FP32) for certain areas of the model, like gradient
accumulation, and lower precision (FP16) for the forward and backward passes (Micike-
vicius et al. 2018). This technique employs three key strategies: maintaining a master
copy of the weights in FP32, applying loss scaling to preserve small gradient values, and
accumulating intermediate results in FP32 before converting them back to FP16. These
methods collectively reduce memory requirements and speed up training on modern
GPUs without modifying hyperparameters. Mixed Precision Training demonstrates its
effectiveness across various deep learning tasks, including image classification, object de-
tection, and language modeling, making it a robust solution for scaling neural networks
efficiently.

Benoit Jacob and colleagues at Google introduced a quantization scheme designed
for efficient integer-arithmetic-only inference (Jacob et al. 2018). This method converts
both weights and activations to 8-bit integers, while a few parameters, like biases, are
kept at 32-bit integers. The key advantage of this approach is that it allows inference
to be performed using integer-only arithmetic, which is significantly more efficient on
common mobile hardware compared to floating-point operations. The training procedure
co-designed with this quantization scheme ensures that the accuracy of the model is
preserved post-quantization. The method has demonstrated significant improvements
in the trade-off between accuracy and on-device latency, particularly with models like
MobileNets. It is highly effective for tasks such as ImageNet classification and COCO
detection on mobile CPUs, showcasing the potential of integer-arithmetic-only inference
for deploying deep learning models in resource-constrained environments.
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Method Key Characteristic

Mixed Precision Training Switches between 16-bit and 32-bit precision while
training

Integer-only Arithmetic Introduces integer level QAT while maintaining ac-
curacy

Q8BERT Quantizes both Fully connected & embedding layers
into 8-bit during finetuning

Block-Wise Quantization Partitions tensors into blocks to reduce outlier impact

KD on QAT Uses Knowledge Distillation techniques on QAT

AdaPT Decides about precision switches between training
epochs based on information theoretic conditions

GPT3 Int8 Efficient Matrix multiplication by quantizing weights
and activations to 8-bit

Quantized Distributed Training Quantizes the gradients and uses an innovative error
feedback mechanism

Integer Forward/Backward
Propagation

Leverages dynamic fixed-point representation to map
floating-point numbers to integers

Activation Aware Quantization Identifies and preserves a small fraction of salient
weights crucial for maintaining model performance

Quantized Full Tuning Uses Lion optimizer to track momentum while train-
ing with Quantization

Table 2.4.: Overview of Quantization methods used during training

Q8BERT addressed the challenge of deploying BERT models in production by intro-
ducing an 8-bit quantization technique during the fine-tuning phase (Zafrir et al. 2019).
This method involves quantizing both the Fully Connected and Embedding layers of
BERT, resulting in significant reductions in model size and inference time without com-
promising accuracy. Specifically, Q8BERT achieves a 4x reduction in memory footprint
and maintains comparable performance to its 32-bit counterpart across various NLP
tasks. The quantization-aware training approach ensures the model learns to bridge
the quantization error gap, thereby optimizing performance for 8-bit hardware envi-
ronments. This advancement facilitates the deployment of large-scale language models
in resource-constrained production settings, offering both computational efficiency and
reduced latency.
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8-bit Optimizers via Block-wise Quantization by Dettmers et al. presents a ground-
breaking technique for optimizing deep learning models using 8-bit precision without
sacrificing performance (Dettmers et al. 2022). The approach involves block-wise dy-
namic quantization, which partitions tensors into smaller blocks, reducing the impact
of outliers and enhancing stability. This method allows for substantial memory savings,
reducing the optimizer state memory usage by up to 75% while maintaining 32-bit per-
formance levels across various tasks, including language modeling, image classification,
and machine translation. By requiring only minor code adjustments, this method offers
a practical solution for efficient model training in resource-constrained environments.

Minsoo Kim et al. introduced a detailed study on improving Knowledge Distilla-
tion (KD) techniques for Quantization-Aware Training (QAT) of large Transformer en-
coders (Kim et al. 2022). The paper examines the limitations of current KD approaches,
such as using MSE loss on attention scores, and proposes two new methods: attention-
map and attention-output losses. These approaches aim to better recover self-attention
information in quantized models. Experiments on BERT-Base and BERT-Large show
that the proposed methods significantly enhance model accuracy in sub-2-bit quantiza-
tion scenarios, setting new benchmarks for QAT performance

Adaptive Precision Training (AdaPT) is a dynamic approach to quantized training of
deep neural networks (Kummer et al. 2023). AdaPT dynamically adjusts the precision of
weights and activations during training on a per-layer basis, using a precision-switching
mechanism guided by information-theoretic criteria. This method balances low precision
for efficiency with sufficient precision for learning, thereby improving both training and
inference efficiency. AdaPT demonstrates significant reductions in computational cost
and memory usage while maintaining high accuracy across models like AlexNet and
ResNet on CIFAR-10/100 datasets.

Tim Dettmers et al. introduced an innovative approach to optimizing transformer
models through 8-bit quantization (Dettmers et al. 2022a). The proposed method
enables efficient matrix multiplication in GPT-3 models by reducing the precision of
weights and activations to 8-bit, significantly enhancing computational efficiency with-
out compromising model accuracy. This approach achieves notable memory and speed
improvements, with up to 4.5x faster inference and 5.6x reduction in memory footprint
compared to standard 32-bit precision. By implementing mixed-precision training and
a novel quantization algorithm that preserves critical information in lower precision,
the authors successfully demonstrate that transformer models can be effectively scaled
while maintaining performance. This method proves particularly beneficial for deploying
large-scale language models in production environments where computational resources
are a constraint. The study’s empirical evaluations validate the robustness of the 8-
bit quantization technique, highlighting its potential to revolutionize the deployment of
transformer-based models in real-world applications.

Quantized distributed training methods have gained significant attention for their
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ability to reduce the computational complexity and memory usage of large-scale models,
particularly in the context of deep learning. Markov et al. in the paper “Quantized Dis-
tributed Training of Large Models with Convergence Guarantees” (Markov et al. 2023)
explores a novel quantized training method that ensures convergence while significantly
reducing computational overhead. This method leverages low-precision arithmetic to
compress model weights, thereby decreasing memory usage and accelerating training
times. The approach is particularly beneficial in distributed training scenarios, where
communication costs are a major bottleneck. By quantizing the gradients and using an
innovative error feedback mechanism, the method maintains model accuracy comparable
to full-precision training. The empirical results demonstrate that this quantized train-
ing approach not only preserves convergence properties but also achieves substantial
improvements in training speed and resource utilization, making it a promising solution
for scaling large models efficiently.

Tayaranian et al. introduced an innovative method for fine-tuning pre-trained lan-
guage models using integer arithmetic for both forward and backward propagation (Tayara-
nian Hosseini et al. 2023). This approach, a departure from traditional methods that
rely on floating-point operations, leverages dynamic fixed-point representation to map
floating-point numbers to integers. Their experiments demonstrated that fine-tuning
BERT with 16-bit integers matches the performance of FP16 and FP32 baselines, while
8-bit integers incurred minimal performance loss, highlighting the potential for signifi-
cant computational and memory efficiency gains.

Activation-aware Weight Quantization presents a novel method for compressing large
language models by focusing on the significance of activation-aware weights (Lin et al.
2024). Unlike traditional quantization techniques that uniformly reduce precision across
all weights, AWQ identifies and preserves a small fraction (0.1%-1%) of salient weights
crucial for maintaining model performance. This selective preservation minimizes quan-
tization errors and enhances computational efficiency. Experiments show that AWQ
achieves a 3.2-3.3x speedup over FP16 implementations while maintaining compara-
ble performance, making it a viable solution for deploying large models on resource-
constrained devices.

The method Quantized Full-Parameter Tuning (QFT) by Li et. al. is a framework
that employs quantization for efficient memory use in fine-tuning LLMs (Li et al. 2024).
Utilizing the Lion optimizer, which tracks only momentum, QFT quantizes all model
states to significantly reduce memory usage. This approach allows fine-tuning a LLaMA-
7B model within 30GB of RAM, achieving comparable performance to standard meth-
ods. QFT’s integration of comprehensive quantization and memory-efficient optimizers
demonstrates its potential for resource-constrained environments.

The next section will explore Post Training quantization techniques which are mainly
used for deploying large models in resource-constrained environments.

31



2. Background

2.6.2. Post Training Quantization

Early work in quantization for neural networks focused on simple linear quantization
schemes. For instance, Han et al. demonstrated that reducing the precision of weights
can significantly compress models without a considerable drop in accuracy (Han et al.
2016). This method involves a three-stage pipeline: pruning, quantization, and Huffman
coding. Initially, network pruning removes redundant connections, retaining only the
most critical ones. This is followed by trained quantization, which reduces the precision
of weights and enforces weight sharing through k-means clustering. Finally, Huffman
coding further compresses the quantized weights. The combined effect of these tech-
niques significantly reduces the storage size of models without sacrificing accuracy. For
instance, the AlexNet model, originally requiring 240MB, was compressed to 6.9MB,
and VGG-16 from 552MB to 11.3MB. This reduction enables large models to fit into the
on-chip SRAM cache rather than relying on off-chip DRAM memory, thereby improving
energy efficiency and inference speed. The Deep Compression method facilitates the de-
ployment of complex neural networks in mobile and resource-constrained environments,
making it a foundational contribution to the field of model compression.

In 2018, Polino et al. introduced a method combining distillation and quantization
to compress deep neural networks (Polino et al. 2018). This approach involves two key
techniques: quantized distillation and differentiable quantization. Quantized distillation
trains a smaller student network using the distillation loss from a larger teacher model
while simultaneously quantizing the student’s weights. Differentiable quantization op-
timizes quantization points through gradient descent, enhancing the student model’s
accuracy by better aligning with the teacher model’s behavior. Experiments demon-
strated that these methods achieve significant model compression and speedup, making
them highly effective for deploying deep learning models in resource-constrained envi-
ronments.

Ye Lin and colleagues explored an innovative approach to enable almost fully 8-bit
integer inference in Transformer models, addressing significant memory and computa-
tional efficiency concerns (Lin et al. 2021). This is achieved through a method called
Scale Propagation, which maintains integer operations throughout the model by man-
aging scales associated with INT8 tensors. The authors also propose the Integer Trans-
former, which modifies traditional functions like the exponential and square root to more
integer-friendly alternatives, such as polynomial functions and L1 normalization. Exper-
iments conducted on machine translation and language modeling tasks demonstrate that
this approach achieves competitive performance while reducing memory usage by nearly
fourfold and speeding up inference by approximately 3.5 times. This advancement opens
new possibilities for deploying high-performance NLP models in resource-constrained en-
vironments without sacrificing accuracy.
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Method Key Characteristic

Deep Compression Prunes, quantizes and uses Huffman coding to reduce
model size

Distillation & Quantization Trains smaller network using distillation loss and op-
timizes quantization points

8-bit int inference Modifies traditional functions like the exponential to
more integer-friendly alternatives

Q-BERT Uses a Hessian-based approach to guide the quanti-
zation process, exploiting the sensitivity of different
layers

Compressing GPTs Implements 8-bit quantization for weights and acti-
vations

ZeroQuant Fine-grained Quantization and layer-by-layer Knowl-
edge distillation

GPTQ Utilizes approximate second-order information

LRRVQ Combines Low-Rank representations with vector
quantization

4-bit FP Quantizes weights and activations by Leveraging per-
channel activation quantization

Atom Combines mixed-precision and fine-grained group
quantization, dynamically adjusting quantization pa-
rameters during inference

AffineQuant Employs Affine transformations, dynamically adjusts
scaling factors for different layers

Partially-Binarized LLMs Maintains full precision for crucial parts of the net-
work while binarizing less critical components

LUT-GEMM Utilizing Look-Up Tables for efficient matrix multi-
plication

Table 2.5.: Overview of Post Training Quantization methods

Shen et al. introduced a layer-wise quantization method that adjusts precision based
on layer-specific characteristics, leading to more efficient and robust models (Shen et al.
2020). Q-BERT, is a method aimed at achieving ultra-low precision quantization for
BERT models without significant performance degradation. The authors use a Hessian-
based approach to guide the quantization process, exploiting the sensitivity of different
layers to precision reduction. By applying mixed-precision quantization and a novel
group-wise quantization scheme, Q-BERT effectively reduces the bit-width of weights
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and activations while preserving model accuracy. Experiments on tasks like SST-2,
MNLI, CoNLL-03, and SQuAD demonstrate that Q-BERT achieves substantial compres-
sion ratios with minimal accuracy loss, enabling efficient deployment of BERT models
in resource-constrained environments.

Efficient quantization techniques were discussed by Tao et al. (Tao et al. 2022), for
compressing Generative Pre-trained Language Models (GPTs) to make them more suit-
able for deployment in resource-constrained environments. By implementing 8-bit quan-
tization for both weights and activations, the authors achieve significant reductions in
memory usage and computational demands without substantially impacting model per-
formance. This method ensures that the compressed models retain high accuracy levels
across various natural language processing tasks. Experimental results demonstrate that
quantized models can achieve nearly the same performance as their full-precision coun-
terparts, making them a viable option for real-world applications where efficiency is
paramount.

Yao et al. introduced ZeroQuant, an effective post-training quantization (PTQ) ap-
proach to compress Transformer models (Yao et al. 2022). ZeroQuant employs fine-
grained quantization schemes and a novel layer-by-layer knowledge distillation (LKD)
algorithm, enabling the compression of BERT and GPT-3 models to INT8 with min-
imal accuracy loss. The method achieves up to 5.19x speedup on BERT and 4.16x
on GPT-3, significantly reducing memory footprint. By leveraging hardware-friendly
optimizations, ZeroQuant demonstrates substantial efficiency improvements, making it
feasible to deploy large models in resource-constrained environments without the need
for retraining.

Dettmers and Zettlemoyer investigated optimal bit-precision for LLMs through exten-
sive experiments, establishing that 4-bit quantization strikes the best balance between
model size and accuracy. This study spans models from 19M to 176B parameters, show-
ing that 4-bit precision consistently delivers superior performance compared to higher
precisions. The findings emphasize the efficiency of small block sizes and specific data
types, such as float and quantile quantization, in enhancing model accuracy and stability.
This optimal scaling law is pivotal for deploying large models in resource-constrained
environments while maintaining high inference performance (Dettmers and Zettlemoyer
2023).

A study by Wu et al. (Wu et al. 2023) examines the impact of INT4 quantization
on language models, focusing on latency improvements, composability, and potential
failure modes. By reducing the precision to 4-bit integers, the models achieve significant
speedups in inference latency, making them highly efficient for deployment in resource-
constrained environments. The research highlights the balance between maintaining
model accuracy and achieving computational efficiency. However, it also addresses the
challenges, such as potential accuracy degradation in specific scenarios and issues with
model composability. These findings are crucial for optimizing large language models
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for practical applications.

The authors, Elias Frantar and colleagues, introduced GPTQ (Frantar et al. 2023),
an efficient post-training quantization method for compressing large-scale GPT models
to 3 or 4-bit precision. GPTQ utilizes approximate second-order information to achieve
high accuracy and efficiency, compressing models like GPT-3 (175 billion parameters)
in about four GPU hours with minimal accuracy loss. The method more than doubles
the compression gains compared to previous techniques while preserving performance,
allowing execution on a single GPU. This makes GPTQ a significant advancement for
deploying massive language models in resource-constrained environments.

Low-Rank Representation Vector Quantization (LRRVQ) (Zhu et al. 2023) is a method
for compressing deep neural networks by combining low-rank representations (LRR)
with vector quantization (VQ). This approach decouples subvector size from clustering
dimensionality, enabling more efficient compression. By optimizing both parameters,
LRR-VQ achieves significant improvements in model performance and compression ra-
tios. For instance, it enhances the top-1 accuracy of ResNet-18 and ResNet-50 by 2.8%
and 1.0%, respectively, over existing VQ methods, while achieving compression factors
of 43x and 31x. This method leverages low-rank approximations to reduce clustering
errors in quantization, thus maintaining high model accuracy with lower storage re-
quirements. The study’s comprehensive experiments on ImageNet and COCO datasets
validate the method’s effectiveness, demonstrating its potential for real-world applica-
tions in resource-constrained environments.

Liu et al. propose a novel method to quantize both weights and activations of large
language models to 4-bit floating-point values (Liu et al. 2023). The technique addresses
high inter-channel variance in activation distributions, leveraging per-channel activation
quantization to maintain model performance. This approach enables efficient compres-
sion, achieving significant memory and computational savings with minimal loss in ac-
curacy. For instance, the method quantizes LLaMA-13B to 4-bit with only a 5.8-point
drop in zero-shot reasoning tasks, outperforming previous state-of-the-art techniques by
a substantial margin.

Atom (Zhao et al. 2024) is a sophisticated low-bit quantization method specifically de-
signed for optimizing LLM serving. Atom employs a combination of mixed-precision and
fine-grained group quantization, dynamically adjusting quantization parameters during
inference to enhance efficiency. By quantizing both weights and activations to 4-bit pre-
cision, Atom achieves up to 7.7x improvement in throughput compared to FP16, with
negligible accuracy loss. This method also incorporates KV-cache quantization, further
boosting memory and computational efficiency, making it a highly effective solution for
deploying LLMs in resource-constrained environments.

AffineQuant, by Ma et al. (Ma et al. 2024), is a quantization method that employs
affine transformations to enhance the efficiency of large language models. Unlike tra-
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ditional techniques, AffineQuant dynamically adjusts scaling factors for different model
layers, thus preserving the precision of critical computations. This technique results in
substantial memory savings and computational efficiency, achieving near full-precision
performance with reduced bit-width representations. The study’s empirical results show
that AffineQuant maintains high accuracy across various NLP benchmarks, making it a
practical approach for deploying large models in constrained environments.

Jing Liu and colleagues present an innovative quantization technique aimed at opti-
mizing large language models for deployment in resource-constrained environments (Liu
et al. 2024). By employing advanced low-bitwidth quantization methods, the paper
demonstrates how to maintain high accuracy while significantly reducing memory and
computational requirements. The proposed method achieves substantial efficiency im-
provements, making it feasible to serve large models on hardware with limited capabili-
ties. Empirical results indicate that QLLM can perform on par with or even exceed the
performance of higher-bitwidth counterparts in various tasks.

Partially Binarized LLMs, introduced by Yuan et al. (Yuan et al. 2024), is an ap-
proach to reduce the computational complexity and memory footprint of large language
models by selectively binarizing portions of the model. This method maintains full pre-
cision for crucial parts of the network while binarizing less critical components, striking
a balance between efficiency and performance. The partially binarized models achieve
substantial improvements in inference speed and resource utilization, with minimal im-
pact on accuracy. This technique demonstrates significant potential for deploying LLMs
in environments with limited computational resources.

The research by Park et. al., introduces LUT-GEMM (Park et al. 2024), a novel quan-
tization approach utilizing Look-Up Tables (LUTs) for efficient matrix multiplication in
large-scale generative language models. By mapping frequent multiplication results to
precomputed LUTs, this method significantly reduces computational overhead. The
paper demonstrates that LUT-GEMM achieves comparable accuracy to full-precision
models while offering substantial improvements in inference speed and energy efficiency.
Specifically, experiments reveal up to a 5x speedup and a 4x reduction in energy con-
sumption, making it an effective solution for real-time applications and deployment in
resource-constrained environments.

Recent advancements in quantization techniques for large models underscore a rapidly
evolving field focused on enhancing model efficiency and deployment feasibility. From
INT4 quantization to dynamic methods utilizing Look-Up Tables, the innovations aim
to balance computational speed and model accuracy. As these methods continue to
mature, they promise to unlock new possibilities for deploying sophisticated models in
resource-limited settings. In the next chapter, we will explore fine-tuning strategies with
quantized models, examining how these approaches can further optimize performance
and efficiency.
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2.7. Summary

This chapter provided a comprehensive overview of key concepts relevant to this thesis.
A thorough literature review was conducted on PEFT and Quantization, highlighting
significant advancements in these areas. It was observed that most research in Quantiza-
tion focuses on Post-Training Quantization (PTQ). There is a need for more development
of Quantization Aware Training. Since Quantization is mainly used post-training for de-
ployment, this also explains the gap in studies that combine Quantization with PEFT.
The next chapter focuses on the intersection of these techniques.
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As the previous chapter illustrated, Quantization and PEFT, have emerged as essential
techniques for large-scale neural network fine-tuning and deployment, particularly in the
natural language processing domain. These techniques have made LLMs far more ac-
cessible to a wider range of users in different industries. Each technique independently
addresses critical challenges associated with the scaling and deployment of deep learning
models. Together, they offer complimentary advantages that significantly improve the
efficiency of the model. With the use of their own datasets and combined use of Quan-
tization & PEFT, academics, developers, and even small businesses may now fine-tune
huge models for certain applications without requiring a lot of processing capacity.

When combined, these two techniques significantly lower the barrier to entry for cus-
tomizing LLMs. The integration of quantization and PEFT leverages the strengths
of both methodologies to achieve an optimal balance between model performance and
efficiency. Quantization significantly lowers the computational requirements for both
training and inference by reducing the precision of model parameters. When applied
alongside PEFT methods, like Adapters, LoRA, or IA3, which minimizes the number of
trainable parameters, the overall resource consumption is drastically reduced. This dual
approach ensures that quantized models occupy less memory, and the additional storage
required for fine-tuned parameters is minimized. This is particularly crucial in scenarios
where storage capacity is a bottleneck. The combined application enables the scaling
of NLP models to handle larger datasets and more complex tasks without proportional
increases in resource requirements. This approach makes it easier to install cutting-edge
models on smaller, resource-constrained devices while simultaneously reducing the cost
of model deployment and maintenance. Together, these two synergies reduce the mem-
ory footprint and computational overhead, making advanced NLP technologies more
widely available and useful for a greater number of applications.

The integration between quantization and PEFT can be effectively utilized through a
well-defined process:

• Initially, a Large Language Model is pre-trained on a huge corpus using FP32 pre-
cision to ensure high accuracy. Post-training, the model undergoes initial quanti-
zation to a lower precision such as BF16, INT8 or INT4.
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• The quantized model is then optimized using PEFT techniques for a specific task.
For instance, in QLoRA, only the low-rank adaptation matrices are fine-tuned
while the original LLM is frozen in a quantized state.

• The resulting model, now optimized through both quantization and PEFT, is
deployed for inference. This final model is highly efficient in terms of memory
usage and computational requirements while still delivering high accuracy.

The practical implications of combining quantization and PEFT are significant, fa-
cilitating the customization of LLMs for specific applications with minimal resource
investment. This approach democratizes access to advanced language models, enabling
diverse use cases across various domains. For instance, Researchers can fine-tune a pre-
trained model on clinical trial data, creating a specialized model adept at understanding
and generating medical text. This quantized and fine-tuned model can be deployed in
healthcare applications, offering insights or generating reports efficiently, even on de-
vices with limited computational power. Developers working with regional languages or
dialects can fine-tune a pre-trained model using a small corpus of text specific to that
dialect. This results in an efficient and accurate language model capable of running
on standard laptops, making advanced NLP accessible in linguistically diverse regions.
Businesses in the financial sector can fine-tune large models on domain-specific data,
such as financial reports and news articles. This creates tools that assist in financial
analysis and decision-making, providing enhanced insights and efficiencies in financial
operations.

The way large language models are deployed and fine-tuned has been revolutionized
by the combination of quantization and PEFT. These approaches have enabled a wide
range of users, from individual developers to small organizations, to customize and deploy
strong language models that are specifically suited to their needs. This democratization
of AI technology paves the way for more innovative and accessible applications, driving
advancements across various fields and industries. The following literature will explore
several methods that leverage the combination of quantization and PEFT to achieve
efficient fine-tuning.

Dettmers et. al. revolutionalized this domain of Quantization+PEFT methods by
introducing QLoRA (Dettmers et al. 2024). QLoRA leverages quantization techniques,
specifically using a 4-bit NormalFloat (NF4) data type that optimally represents nor-
mally distributed weights, to finetune LLMs efficiently. By backpropagating gradients
through a frozen, 4-bit quantized pre-trained language model into Low-Rank Adapters
(LoRA), QLoRA significantly reduces memory usage, allowing the fine-tuning of a 65
billion parameter model on a single 48GB GPU while maintaining performance levels
comparable to 16-bit fine-tuning. Empirical results demonstrate that QLoRA achieves
near state-of-the-art performance on their Vicuna model, attaining 99.3% of the perfor-
mance level of ChatGPT with only 24 hours of fine-tuning on a single GPU. Additionally,
QLoRA’s methodology ensures that smaller, high-quality datasets can still yield com-
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petitive results, offering a cost-effective alternative to traditional fine-tuning methods.
We will learn more about QLoRA in the next section.

Method Key Characteristic

QLoRA Innovative 4-bit quantization and double quantiza-
tion combined with LoRA

PEQA Updates only quantization scales while keeping rest
of the model frozen in 4-bit

QA-LoRA Upgrades QLoRA by using group-wise operators

LoftQ Focuses on reducing quantization error by improving
LoRA initialization

LQ-LoRA Decomposes pre-trained matrices into high-precision
low-rank and quantized components

L4Q Optimizes LoRA Weights and quantization parame-
ters

Table 3.1.: Overview of PEFT Methods used on Quantized Models

Jeonghoon Kim and colleagues introduced an advanced technique designed to mit-
igate the high memory demands and computational costs associated with fine-tuning
LLMs (Kim et al. 2024). This method called Parameter-Efficient and Quantization-
aware Adaptation (PEQA), combines the benefits of PEFT with the advantages of sub-
4-bit quantization. By updating only the quantization scales while keeping the integer
matrix frozen, PEQA significantly reduces the memory overhead typically associated
with the optimizer state during fine-tuning. This approach ensures that the quanti-
zation structure remains intact even after fine-tuning, thereby allowing for accelerated
inference during deployment. Empirical results demonstrate that PEQA can restore or
even improve the performance of LLMs in language modeling and comprehension tasks,
despite the models being quantized to below 4-bit precision. This makes PEQA a highly
effective solution for enhancing the efficiency and scalability of LLMs while maintaining
their performance integrity.

Inspired by QLoRA, Xu et al. presented QA-LoRA (Xu et al. 2024). By employing
group-wise operators, QA-LoRA increases the degrees of freedom for quantization while
reducing those for adaptation, resulting in lower memory usage and faster inference.
Applied to LLaMA and LLaMA2 models, QA-LoRA outperforms baseline QLoRA in
accuracy, especially under low-bit quantization conditions, making it a significant ad-
vancement in LLM fine-tuning techniques.
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Yixiao Li et al. introduced LoftQ (Li et al. 2024), a novel quantization framework de-
signed to enhance the performance of quantized LLMs when fine-tuned using Low-Rank
Adaptation (LoRA). LoftQ integrates quantization with low-rank approximation, opti-
mizing the initialization for LoRA fine-tuning. This method addresses the performance
degradation seen in quantized models, particularly in low-bit regimes. Experimental
results show that LoftQ outperforms existing methods like QLoRA across various NLP
tasks, demonstrating significant improvements in efficiency and generalization.

An approach called LQ-LoRA, combining low-rank adaptation with quantized matrix
decomposition to enhance memory efficiency in LLM finetuning was explored by Guo et.
al. (Guo et al. 2024). Using an iterative algorithm, it decomposes pretrained matrices
into high-precision low-rank and quantized components. This method enables sub-3-
bit quantization with minor performance loss, outperforming QLoRA and GPTQ-LoRA
baselines. LQ-LoRA demonstrates significant memory savings while maintaining high
performance across multiple tasks.

One of the most recent methods called L4Q, combined Quantization Aware Training
(QAT) with LoRA (Jeon et al. 2024). Leveraging LoRA-wise learned quantization step
size, L4Q optimizes both LoRA weights and quantization parameters, enabling efficient
fine-tuning of large models like LLaMA and LLaMA2. This approach achieves sub-4-bit
precision, maintaining high accuracy with reduced memory usage and training times,
outperforming traditional PEFT and QAT methods.

As can be observed, the volume of research in this field has mostly been in the last
year. There has been an increasing trend to develop more methods in the intersection
of Quantization and PEFT. These methods demonstrate significant advancements in
optimizing memory efficiency and computational resource utilization while maintaining
or enhancing model performance.

The approaches that will be used in the experiments with Quantization and PEFT will
be thoroughly discussed in the sections that follow. Their usefulness and practical uses
in LLM fine-tuning will be assessed based on the results of this concentrated analysis.

3.1. QLoRA

Quantization and Low-Rank Adaptation (QLoRA) is a novel technique that leverages
both quantization and low-rank adaptation methods to fine-tune large-scale language
models efficiently. This method is particularly valuable for adapting large pre-trained
models to specific tasks while keeping computational and storage costs manageable.

Core Components of QLoRA:
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• Quantization: Reduces the precision of model parameters to decrease the compu-
tational and storage burden, typically converting floating-point numbers to lower
bit-width integers.

• LoRA: Fine-tunes pre-trained models by adapting a small subset of parameters,
projected into a lower-dimensional space, which significantly reduces the number
of parameters updated during fine-tuning.

QLoRA integrates quantization with LoRA to achieve efficient fine-tuning of large
language models. QLoRA employs advanced quantization techniques, specifically 4-bit
NormalFloat (NF4) quantization and double quantization, to enhance memory efficiency
and computational speed while maintaining model accuracy. This technique reduces
the precision of the model’s parameters from the standard 32-bit floating-point format
(FP32) to more compact formats (4 bit), thereby facilitating the deployment of large
models on resource-constrained hardware. Figure 3.1 shows the difference between Full-
finetuning, LoRA-finetuning, and QLoRA fine-tuning. QLoRA improves over LoRA by
quantizing the frozen transformer model to 4 bits.

Figure 3.1.: Different finetuning methods and their memory requirements. QLoRA im-
proves over LoRA by quantizing the transformer model to 4-bit precision
and using paged optimizers to handle memory spikes. Image and Caption
adapted from (Dettmers et al. 2024).

3.1.1. Quantization in QLoRA

4-bit NormalFloat (NF4) Quantization

The goal of NF4 quantization is to drastically reduce the model size while maintaining the
original floating-point values’ dynamic range. The key advantage of NF4 quantization
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lies in its ability to strike a balance between precision and memory efficiency.

The NormalFloat (NF4) data type builds on Quantile Quantization, which is information-
theoretically optimal for normally distributed weights. It ensures each quantization bin
has an equal number of values assigned from the input tensor. The quantization process
for NF4 involves the following steps:

• The quantiles for a zero-centered normal distribution are calculated to obtain a k-
bit quantile quantization data type. This involves determining the 2k +1 quantiles
of a standard normal distribution N(0, 1)

qi =
1

2

(
QX

(
i

2k + 1

)
+ QX

(
i + 1

2k + 1

))
where QX is the quantile function of the standard normal distribution.

• The calculated quantiles are normalized to fit into the range [−1, 1], ensuring that
the data type matches the distribution of the neural network weights.

• An input weight tensor is normalizing into the [−1, 1] range through absolute
maximum rescaling.

• Once the weight range and data type range match, we can quantize using the
Block-wise k-bit Quantization as described in the related work section.

• To ensure a discrete zero point and use all 2k bits, NF4 employs an asymmetric
data type by estimating quantiles for negative and positive parts of the distribution,
unifying them and then removing one of the two zeros.

Double Quantization

Double quantization quantizes the quantization constants themselves, significantly com-
pressing the model. This two-step process reduces the memory footprint significantly.

• NF4 quantization is used in the first quantization to transform the FP32 weights
to a 4-bit representation. This involves calculating the quantization constants c
for each block of weights.

• Further quantization converts the first level’s quantization constants, which are
normally stored as 32-bit floats, to 8-bit floats. By doing this, the overhead of
keeping these constants is decreased. Formally, if c2 are the quantization constants
from the first quantization, they are treated as inputs to the second quantization.
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By applying double quantization, QLoRA achieves further memory efficiency without
significant performance degradation.

3.1.2. Low Rank Adapters

Low-rank adaptation (LoRA) is among the most widely used and effective techniques
for efficiently training custom LLMs. LoRA works by augmenting the existing weights
of a neural network with low-rank matrices that are specifically trained for the new task.
The procedure is explained as follows:

• Given a weight matrix W ∈ Rd∗k of a neural network layer. LoRA decomposes it
into two lower-rank matrices A ∈ Rd∗r and B ∈ Rr∗k where r is a hyperparameter
and is usually chosen much smaller than both d and k. The original weight matrix
can be approximated by W + ∆W , where ∆W = A x B.

• These low-rank matrices A and B are initialized such that ∆W is a zero matrix.
Generally, A is initialized with small random values and B is initialized with zeros.

• During fine-tuning, the parameters of the original pre-trained model W are kept
frozen, and only the parameters in A and B are updated.

• After training, the effective weight matrix used in the model is W + ∆W . The
updates from the low-rank matrices A and B provide the necessary task-specific
adjustments to the model.

This decomposition and selective training approach ensure that the model can be
efficiently adapted to new tasks with minimal additional computational resources.

In our experiments, we focus on three crucial parameters: the rank (r), the scaling
factor (α), and LoRA dropout. These parameters play a significant role in determining
the performance and efficiency of the fine-tuning process.

The rank parameter determines the dimensionality of the low-rank matrices A and
B. Essentially, r defines the shape and complexity of these matrices. According to the
original LoRA paper, even a small rank can yield excellent results, as the low-rank ap-
proximation effectively captures the essential updates needed for fine-tuning (Hu et al.
2021). Setting an appropriate rank is crucial, as it balances the trade-off between model
complexity and computational efficiency. A lower rank reduces the number of parame-
ters, leading to faster computations and lower memory usage, while a higher rank may
capture more intricate patterns in the data but at the cost of increased computational
demands.
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The scaling factor (α) acts as a multiplicative factor that scales the low-rank updates
applied to the weight matrix. This parameter controls the impact of the low-rank updates
on the original weights, effectively functioning as a learning rate. By adjusting α, we
can regulate the magnitude of the updates BA during the fine-tuning process. A higher
scaling factor increases the influence of the low-rank updates, potentially accelerating
convergence but also risking instability if set too high. Conversely, a lower scaling factor
moderates the updates, promoting stable training at the expense of slower convergence.

The dropout parameter introduces a dropout mechanism to the low-rank updates,
which helps in regularizing the fine-tuning process and preventing overfitting. Dropout
randomly zeroes out a fraction of the low-rank update units during training, encouraging
the model to learn more robust representations that generalize better to unseen data.

The combined effect of these parameters significantly influences the fine-tuning perfor-
mance and efficiency of LoRA. By carefully tuning these parameters, we can achieve an
optimal balance between computational efficiency, memory usage, and model accuracy.
Lower ranks reduce computational load but may miss out on capturing finer details in
the data, while higher ranks provide richer updates at the cost of increased resource
consumption. Similarly, α needs to be set appropriately to ensure that the updates are
neither too aggressive nor too timid, ensuring stable and effective learning.

3.1.3. Combination of Quantization and LoRA

The concepts of quantization and LoRA are combined in QLoRA to provide a potent
and effective model fine-tuning method. Combining the parameter-efficient adaptation
capabilities of LoRA with the memory and computational efficiency of quantization
results in a powerful combination.

QLoRA for a single layer is defined as follows:

Y BF16 = XBF16doubleDequant(cFP32
1 , ck−bit

2 ,WNF4) + XBF16ABF16BBF16 (3.1)

where doubleDequant(.) is defined as:

doubleDequant(cFP32
1 , ck−bit

2 ,W k−bit) = dequant(dequant(cFP32
1 , ck−bit

2 ),W k−bit)

= WBF16
(3.2)

In summary, QLORA supports one calculation data type (BF16) and one storage data
type (NF4). To conduct the forward and backward passes, it dequantizes the storage
data type to the calculation data type; however, it only computes weight gradients for
the LoRA parameters that employ BF16.
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3.1.4. Advantages of QLoRA

• By combining low-precision quantization with low-rank adaptation, QLoRA dra-
matically reduces memory and storage needs, enabling the effective deployment of
large-scale models on hardware with limited resources.

• The integration of 4-bit quantization and LoRA reduces the number of arithmetic
operations during both training and inference, enabling faster processing times and
reduced computational costs.

• QLoRA’s fine-tuning approach, focusing on low-rank adaptations within a quan-
tized model, ensures that large pre-trained models can be efficiently adapted to
specific tasks with minimal resource overhead.

3.1.5. Implementation Considerations

• Optimising QLoRA’s performance and efficiency requires fine-tuning its hyperpa-
rameters, which include learning rates and the rank of the low-rank decomposition.

• The effectiveness of QLoRA can vary based on the neural network architecture.
Models with larger weight matrices and significant redundancy in their parameters
tend to benefit more from this approach.

3.2. Rank Stabilized LoRA

Rank-stabilized LoRA (rsLoRA) introduces a novel scaling factor for fine-tuning LLMs
using LoRA. Traditional LoRA applies a low-rank matrix product scaled by a rank-
dependent factor, which leads to slowed learning and diminished performance with
higher-rank adapters. RsLoRA modifies this by scaling the adapters with the square
root of the rank, enhancing learning stability and performance, especially for larger
ranks.

Mathematical Formulation
The conventional LoRA-augmented sub-module is given by:

xout = (W + γrBA)xin + b (3.3)

where W and b are pre-trained parameters, and γr is the scaling factor. In rsLoRA,
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the scaling factor is adjusted to:

γr =
α√
r

(3.4)

This adjustment ensures that the learning trajectory remains stable, preventing gra-
dient collapse as rank r increases.

Advantages:
RsLoRA’s critical improvement lies in its ability to utilize higher ranks effectively with-
out the drawbacks of gradient collapse, which is prevalent in conventional LoRA as the
rank increases. This allows for a compute/performance trade-off where larger ranks can
be used to improve fine-tuning performance with no additional inference cost. Experi-
mental results show that rsLoRA unlocks better performance with higher ranks, whereas
traditional LoRA fails to benefit from increased rank due to its overly aggressive scaling
factor.

RsLoRA is significant for its potential to enhance fine-tuning efficiency and perfor-
mance in LLMs. By stabilizing the learning process for higher ranks, it facilitates the
use of larger computational resources effectively, leading to better model adaptation and
performance. This method provides a pathway to more efficient and scalable fine-tuning
of LLMs, which is crucial as model sizes continue to grow.

3.3. LoftQ

LoftQ, is an approach designed to enhance the efficiency of training LLMs by combining
principles of LoRA and quantization techniques. LoftQ aims to address the computa-
tional and memory challenges associated with fine-tuning and deploying LLMs, especially
when dealing with resource-constrained environments. The method addresses the per-
formance gap between full-precision and quantized models by incorporating low-rank
approximations during the quantization process. This ensures a more effective initial-
ization for LoRA fine-tuning, reducing the discrepancy introduced by quantization.

The core idea of LoftQ, similar to QLoRA, is to apply quantization with LoRA, ef-
fectively compressing the model while preserving its performance. The LoftQ method
operates in three primary stages: low-rank adaptation, quantization, and weight initial-
ization. Proper initialization of weights is crucial in LoftQ to ensure stable and efficient
training. In this method, the weights of the low-rank matrices A and B are initialized
using a scheme that preserves the properties of the original weight matrix.

Mathematical Formulation
LoftQ minimizes the difference between the original pre-trained weights W and the
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quantized weights plus low-rank matrices Q + BA. The objective function is:

minQ,A,B||W −Q−BA||F (3.5)

where Q is the quantized weight matrix, A and B are low-rank matrices, and ||.||F
denotes the Frobenius norm. The method uses alternating optimization, alternating
between quantizing the residual and applying singular value decomposition (SVD) to
refine A and B.

Advantages:
LoftQ offers significant advantages over traditional LoRA by integrating quantization
and low-rank approximation, leading to enhanced initialization that keeps the initial
weights closer to the original pre-trained weights, thereby improving fine-tuning stabil-
ity and performance. It excels in low-bit quantization scenarios, maintaining superior
performance compared to QLoRA, especially in challenging lower-bit mixed precision
regimes. Additionally, LoftQ consistently outperforms QLoRA across various NLP tasks,
including natural language understanding, question answering, summarization, and lan-
guage generation.

LoftQ is significant as it bridges the gap between full-precision and quantized mod-
els, enabling efficient and effective fine-tuning of LLMs with reduced computational
resources. This is particularly crucial for deploying large models in resource-constrained
environments, ensuring they can still achieve high performance across diverse tasks.

3.4. IA3

IA3, which stands for Infused Adapter by Inhibiting and Amplifying Inner Activations,
is a PEFT method designed for optimizing LLMs with minimal additional parameters.
IA3 scales intermediate activations in transformers by learned vectors, enabling effec-
tive fine-tuning with a tiny fraction of the model’s parameters. This method leverages
the existing architecture without extensive modifications, making it highly efficient and
scalable.

Mathematical Formulation
IA3 introduces learned vectors lk ∈ Rdk , lv ∈ Rdv , lff ∈ Rdff that rescale the keys and
values in attention layers and the activations in feed-forward networks.

The key transformation is defined as:

Attention(Q,K, V ) = softmax(
Q(lk ⊙K)T√

dk
)(lv ⊙ V ) (3.6)
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For the feed-forward network, the transformation is:

FNN(x) = lff ⊙ReLU(W1x)W2 (3.7)

where ⊙ represents element-wise multiplication.

Advantages:
IA3 surpasses traditional LoRA by requiring fewer parameters while achieving supe-
rior performance. The method scales the activations directly, providing a more stable
learning process and better optimization. IA3 can handle mixed-task batches efficiently,
unlike many other PEFT methods that re-parameterize the model. This allows for
flexible and efficient multitask learning.

By updating only a small set of parameters, IA3 ensures that models can be adapted to
new tasks quickly and efficiently without extensive retraining. Additionally, quantizing
the frozen model further enhances efficiency by reducing memory usage and computa-
tional load, making it even more beneficial.

3.5. Weight-Decomposed Low-Rank Adaptation

Figure 3.2.: DoRA decomposes the pre-trained weight into magnitude and direction com-
ponents for fine-tuning, especially with LoRA to efficiently update the di-
rection component. Image and Caption adapted from (Liu et al. 2024).
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Weight-Decomposed Low-Rank Adaptation or DoRA is a method designed to enhance
the learning capacity and stability of LoRA without adding any inference overhead.
DoRA decomposes pre-trained weights into two distinct components: magnitude and
direction. This decomposition is inspired by weight normalization techniques and aims
to closely resemble the learning capacity of full fine-tuning while maintaining the effi-
ciency of LoRA.

Mathematical Formulation
The core idea behind DoRA is to reparameterize the weight matrix W into magnitude
m and directional V components:

W = m
V

||V ||c
= ||W ||c

W

||W ||c
(3.8)

where ||.||c denotes the vector-wise norm of a matrix across each column. In DoRA,
m is the magnitude vector and V is the directional matrix, ensuring each column of V
remains a unit vector.

DoRA applies this decomposition to the pre-trained weights and uses LoRA for the
directional updates. The fine-tuned weight W ′ can be represented as:

W ′ = m
W0 + BA

||W0 + BA||c
(3.9)

where W0 is the pre-trained weight matrix and BA are the low-rank updates learned by
LoRA.

Advantages:
DoRA addresses the limitations of traditional LoRA by effectively managing the trade-
off between learning capacity and computational efficiency. By decomposing weights
into magnitude and direction, DoRA allows for more nuanced updates that resemble
the learning patterns of full fine-tuning, thus improving the learning capacity over tra-
ditional LoRA. The decomposition stabilizes the optimization process, leading to more
efficient training and better performance. DoRA maintains the inference efficiency of
LoRA by merging the learned updates with the pre-trained weights before deployment,
ensuring no additional latency is introduced.

It enhances fine-tuning performance across various tasks, including natural language
processing and vision-language understanding, without increasing the computational
burden during inference. This makes DoRA a valuable method for optimizing large-
scale models in resource-constrained environments.
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3.6. Half Quadratic Quantization

Half Quadratic Quantization (HQQ) (Badri and Shaji 2023) is a novel approach to quan-
tization that aims to reduce the memory footprint and computational cost of LLMs while
preserving model accuracy. Traditional quantization methods often suffer from signifi-
cant quantization errors, particularly when reducing the precision of weights to improve
efficiency. HQQ addresses this challenge by approximating the quantization function
using a quadratic form, thereby enhancing the fidelity of the quantized weights.

Mathematical Formulation
HQQ operates by minimizing the difference between the original weights of a neural net-
work and their quantized counterparts using a quadratic loss function. This approach
ensures that the quantization error is reduced compared to linear quantization methods.
Specifically, HQQ formulates the quantization process as:

Q(θ) = argminQ||θ −Q||2F + λ||Q||2F (3.10)

where θ represents the original weights of the model, Q denotes the quantized weights,
||.||F denotes the Frobenius norm, and λ is a regularization parameter that controls the
trade-off between fidelity to the original weights and quantization error.

Advantages:

• By incorporating the quadratic loss term, HQQ minimizes the discrepancy between
original and quantized weights, thereby preserving model accuracy better than
linear quantization methods.

• HQQ offers a balanced trade-off between model efficiency and accuracy.

3.7. Summary

This chapter briefly explored the intersection of Quantization and PEFT methods and
provided an in-depth analysis of the techniques employed in the experiments. Given
the limited and emerging research in this combined area, a comprehensive study and
evaluation of these methods across various criteria is essential.

The next chapter outlines the experiments, detailing the objectives, datasets, mod-
els, configurations, and key research questions. It also summarizes the results, offering
insights into the application of PEFT methods to quantized models.
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This chapter presents a series of experiments designed to explore the efficacy of various
PEFT methods combined with different quantization techniques for fine-tuning LLMs.
The primary objective of these experiments is to evaluate the performance and memory
efficiency of different PEFT methods when applied to quantized LLMs. The experiments
encompass a variety of configurations and methodologies to provide a comprehensive
analysis of the capabilities and trade-offs associated with each approach.

The motivation behind these experiments is rooted from the the growing need for
efficient tuning and deployment of LLMs in resource-constrained environments. LLMs,
such as LLaMa and Mistral, have demonstrated remarkable performance across a range
of NLP tasks, however, their substantial memory and computational requirements pose
significant challenges for practical applications. Addressing these challenges is critical
to making such models more accessible and practical for a broader range of use cases.

The experiments are conducted exclusively with causal language models, focusing on
generative models and tasks related to natural language generation.

4.1. Goal of the Experiments

The primary aim of these experiments is to systematically evaluate and compare the
effectiveness of various PEFT methods when combined with different quantization tech-
niques for fine-tuning LLMs. This comprehensive analysis aims to identify the optimal
strategies for enhancing the performance, efficiency, and practicality of deploying LLMs
in resource-constrained environments.

• Assess Memory and Computational Efficiency: Quantization techniques are
employed to reduce the memory footprint and computational demands of LLMs.
The goal is to measure the impact of these techniques on model efficiency without
compromising performance.

• Evaluate Performance of PEFT Methods: Several PEFT methods are ex-
plored, including LoRA, RS-LoRA, IA3, and DoRA, to determine their effective-
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ness in fine-tuning LLMs with reduced trainable parameters. Each method’s ability
to maintain model performance and robustness is critically assessed.

• Understand the Practical Implications: Beyond theoretical performance met-
rics, the objective is to understand the practical implications of deploying these
fine-tuning strategies in real-world scenarios. This includes evaluating the ease of
implementation, scalability, and potential impact on various NLP tasks.

4.2. Datasets used for Fine-tuning

Unnatural Instructions Core The Unnatural Instructions Core dataset (Honovich et al.
2023) is an instruction-tuning dataset collected via various approaches of model distil-
lation from GPT-3 Instruct and ChatGPT. This dataset leverages techniques such as
prompting, in-context learning, and paraphrasing to generate diverse sets of instruc-
tions and outputs. It comprises 240,670 examples, making it a substantial resource for
fine-tuning models to handle a wide variety of instruction styles and contexts. The
dataset’s diversity is a significant advantage, providing a broader range of instruction
styles compared to other instruction tuning collections.

HH-RLHF The Anthropic HH-RLHF dataset (Bai et al. 2022) is a human preference
dataset focused on the helpfulness and harmlessness of assistant replies. Each data point
includes two assistant replies to a user question, accompanied by a human preference
judgment indicating the better reply. This dataset contains 160,800 examples. For fine-
tuning purposes, we combine the helpfulness and harmlessness data and retain only the
preferred assistant reply. This approach ensures that the model learns to prioritize re-
sponses that are both useful and safe, enhancing the quality of the assistant’s interactions
with users.

OpenAssistant The OpenAssistant dataset (Köpf et al. 2024) was collected through
crowd-sourcing efforts. It includes 161,443 unique messages across 66,497 conversations,
covering 35 different languages. Typically, the dataset features multiple ranked replies
for each user question. In our experiments, we use only the top reply at each conversation
level, reducing the dataset to 9,209 examples. This dataset is used for fine-tuning models
on entire conversations, including user queries, enabling the development of models that
can engage in more natural and contextually aware interactions.
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4.3. LLMs used in the experiments

LLaMa 2 LLaMa2, developed by Meta AI, is an advanced large language model de-
signed to improve natural language understanding and generation. It builds upon the
architecture of its predecessor, LLaMa, with enhanced capabilities in handling diverse
NLP tasks. LLaMa2 is trained on a vast corpus of text data, enabling it to generate
coherent and contextually relevant responses. Its robust performance across various
benchmarks makes it a suitable choice for fine-tuning experiments aimed at optimizing
model efficiency and accuracy.

LLaMa3 LLaMa3 represents the next iteration in the LLaMa series, featuring signif-
icant improvements in both architecture and training methodologies. This model in-
corporates advanced techniques in transformer architecture and benefits from extensive
pretraining on diverse datasets. LLaMa3 is designed to further push the boundaries of
natural language processing, offering superior performance in text generation, compre-
hension, and contextual awareness. Its enhanced capabilities make it a valuable asset
for experiments focused on fine-tuning and quantization.

4.4. Implementation Details

The implementation process for my experiments follows a systematic approach to fine-
tuning LLMs using various quantization techniques and PEFT methods. This section
outlines the general steps involved in the implementation, providing a high-level overview
of the procedure without delving into specific configurations or methods.

• Model Selection: A suitable pre-trained language model is selected as the base
model for fine-tuning.

• Quantization: The original weights of the selected model are quantized using a
chosen quantization technique. This step involves reducing the precision of the
weights to lower-bit representations to decrease the memory footprint and compu-
tational requirements. In all our experiments, we use bf16 computation datatype.

• PEFT Method: A PEFT method is integrated into the fine-tuning process to
further optimize the model. They are employed to reduce the number of parameters
that need to be updated during fine-tuning.

• Fine-Tuning: The quantized and adapted model is fine-tuned on a target NLP
task using one of the selected datasets. The fine-tuning is performed in a supervised
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learning way with Cross-Entropy Loss. We use a constant learning rate schedule
and use group-by-length to group examples of similar lengths in the same batch
(note this will produce an oscillating loss curve).

• Training and Evaluation: During the fine-tuning process, the model’s perfor-
mance is monitored and evaluated using standard metrics. Memory usage and
computational efficiency are also recorded to assess the impact of the quantization
and adaptation methods.

4.5. Evaluation Criteria

Perplexity : Perplexity is an intrinsic measure to evaluate the performance of language
models. Perplexity measures the uncertainty of a language model’s predictions. It
measures the confidence model in its (next word) predictions. Simply put, it quantifies
how well the model-predicted probability distributions align with the actual distribution
of the words in the dataset. In a practical example, we could train a model on a training
dataset and evaluate its perplexity on a separate validation dataset. This helps us
understand how well the model generalizes on the unseen data. Ideally, perplexity should
be low on both the training and validation datasets. Low perplexity only guarantees a
model is confident, not accurate.

In the experiments, perplexity is measured on a validation set to evaluate the model’s
confidence on the data it is being fine-tuned on. This metric helps assess how well the
model generalizes and adapts during the fine-tuning process, providing insight into its
overall effectiveness and reliability on unseen data.

Downstream Task - MMLU: Massive Multitask Language Understanding (MMLU) is
chosen to evaluate models on a downstream tasks. It is a benchmark designed to measure
knowledge acquired during pretraining by evaluating models exclusively in zero-shot and
few-shot settings. In the case of thesis, a few shot settings will be considered to directly
compare with the QLoRA paper.

The benchmark encompasses 57 subjects across STEM, the humanities, social sciences,
and more, with difficulty levels ranging from elementary to advanced professional. It
assesses both world knowledge and problem-solving ability, covering traditional subjects
like mathematics and history, as well as specialized areas such as law and ethics. Given
that many LLMs are typically evaluated based on their average performance across all
domains, the LLMs fine-tuned in our experiments will be assessed in the same manner.
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4.6. Experimental Setup

4.6.1. Combination 1 - QLoRA & variations

This series of experiments explores the application of QLoRA in fine-tuning LLMs.
The goal of these experiments is to investigate the impact of different LoRA parameter
configurations on model performance and memory efficiency. By varying the parameters
r (rank) and α, the aim is to understand how these configurations affect the efficiency and
effectiveness in fine-tuning LLMs using these techniques, ultimately providing insights
into the optimal settings for specific language modeling tasks.

In addition, the experiments also investigate the impact of using Rank Stabilizing Low-
Rank Adaptation (RsLoRA) with Quantization under the same configurations. RsLoRA
introduces an additional stabilizing mechanism to the low-rank adaptation process as
described in 3.2, aiming to improve the robustness and performance consistency of the
fine-tuned models. We evaluate how RS-LoRA affects the model’s performance and
memory efficiency compared to standard LoRA when applied with QLoRA’s quantization
techniques.

Lastly, we build upon the previous investigations by incorporating LoftQ initialization
into the fine-tuning process. LoftQ, as explained in section 3.3, is designed to further
enhance the efficiency and performance of QLoRA by optimizing the initialization of
low-rank matrices. Specifically, LoftQ has been shown to reduce quantization error by
ensuring that the low-rank approximations closely match the original weight matrices
from the start. This reduces the need for extensive fine-tuning and adjustment, leading
to faster convergence and potentially better model performance. We can measure the
impact of LoftQ initialization on model performance and memory efficiency, both with
and without RS-LoRA.

This experimentation is crucial for enhancing the practical deployment of LLMs in
resource-constrained environments, where both computational efficiency and model per-
formance are critical. This experimentation is crucial for enhancing the practical de-
ployment of LLMs in resource-constrained environments, where both computational ef-
ficiency and model performance are critical.

The motivation behind this experiment comes from the need to balance model per-
formance with computational efficiency in the context of LLM fine-tuning. Traditional
fine-tuning of LLMs is resource-intensive, requiring substantial computational power and
memory. QLoRA offers a promising solution by combining quantization with low-rank
adaptation, thereby reducing the model’s memory footprint and computational demands
without significantly compromising performance. Additionally, incorporating a rank sta-
bilization technique may offer further improvements in terms of both robustness and ef-
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ficiency. However, initializing low-rank matrices appropriately remains a challenge that
can impact the overall effectiveness of these methods. LoftQ addresses this challenge by
providing a structured approach to weight initialization that preserves the properties of
the original weight matrix, leading to more stable and efficient training.

Specifically, this experiment addresses the following questions:

• How do different configurations of the LoRA parameters r and α influence the
performance of QLoRA?

• Can we identify parameter settings that provide an optimal balance between effi-
ciency and accuracy?

• How does QLoRA affect memory load and overall memory efficiency during the
fine-tuning process?

• Assess the benefits of rank stabilization and LoftQ in the context of QLoRA.

• Compare the performance and memory efficiency of RS-LoRA against standard
LoRA under the same configurations and effectiveness of LoftQ with and without
RS-LoRA.

By systematically varying r and α, the objective is to derive practical guidelines for
fine-tuning LLMs using QLoRA, facilitating more efficient and effective model deploy-
ment in real-world applications.

The experiment involves fine-tuning a pre-trained language model using the integrated
QLoRA, RS-LoRA, and LoftQ methods. The configurations for the low-rank adaptation
parameters are as follows:

• Configuration 1: r = 64, α = 16

– Replicating the settings of QLoRA paper. This configuration uses a relatively
high rank with a moderate scaling factor, aiming to balance the complexity
and learning capacity of the low-rank matrices.

• Configuration 2: r = 8, α = 16

– With a lower rank, this setting is expected to reduce computational demands
while testing the impact on model performance.

• Configuration 3: r = 16, α = 32

– This setup increases the scaling factor compared to Configuration 2, allowing
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us to evaluate how increased scaling influences the effectiveness of a moder-
ately low rank.

• Configuration 4: r = 64, α = 128

– By significantly increasing the scaling factor while maintaining a high rank,
this configuration tests the upper limits of scaling’s impact on model perfor-
mance.

• Configuration 5: r = 256, α = 128

– This configuration uses the highest rank among all settings, combined with a
high scaling factor, to explore the effects of maximum parameter settings on
both performance and computational cost.

This combined experiment aims to systematically investigate the integrated effects
of QLoRA, RsLoRA, and LoftQ on the performance and memory efficiency of LLMs.
By evaluating these methods together, we seek to identify the optimal strategies for
efficient and robust model adaptation, facilitating the deployment of LLMs in diverse
and resource-constrained environments.

The quantization techniques used in these experiments follow the same approach as
QLoRA, which involves Normal Float (NF4) quantization and double quantization. The
experiments are conducted on different pre-trained language models which are mentioned
in Section 4.3. The implementation steps mentioned in the previous section were followed
for the experiments. The rest of the experimental settings are consistent across all the
experiments and can be found in the Appendix ??.

4.6.2. Combination 2 - QIA3

In this experiment, we explore the application of a PEFT method known as IA3. Unlike
previous experiments that incorporated LoRA, this experiment focuses exclusively on
IA3, evaluating its effectiveness with quantization. The goal is to assess the performance
and memory efficiency of IA3 when combined with NF4 and the double quantization
method.

The purpose of this experiment is to investigate the potential of IA3 with Quantiza-
tion. IA3 enhances model adaptation by iteratively adjusting the attention mechanisms,
which are crucial for capturing dependencies and context in language tasks. This itera-
tive approach allows the model to dynamically fine-tune its attention layers, potentially
leading to more precise and contextually appropriate outputs. Implementing IA3 aims
to achieve high performance with fewer trainable parameters, thereby reducing compu-
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tational costs and improving efficiency. By comparing the effects of IA3 with different
quantization techniques, we seek to understand its advantages over static fine-tuning
methods and identify configurations that maximize both performance and resource effi-
ciency.

IA3 is quite easy to implement and doesn’t have any hyperparameters to tune or create
different configurations. The results can be directly compared with the results from the
previous experiments.

4.6.3. Combination 3 - QDoRA

Here, the experiments explore the application of Dynamic Low-Rank Adaptation (DoRA)
in the fine-tuning process of LLMs. DoRA introduces dynamic adjustments to the low-
rank adaptation process, aiming to enhance the adaptability and performance of the
model. This experiment seeks to evaluate the impact of DoRA on model performance
and memory efficiency, providing a comparative analysis against previous configurations
without DoRA.

The motivation behind this experiment is to leverage DoRA to further enhance the ro-
bustness and flexibility of QLoRA. While previous experiments with standard LoRA and
RsLoRA have demonstrated significant improvements in memory efficiency and perfor-
mance, there is a need for dynamic mechanisms that can adjust the low-rank adaptation
parameters during training. DoRA addresses this need by introducing dynamic adjust-
ments based on the training process, which can lead to more efficient learning and better
overall performance.

DoRA is particularly beneficial because it adapts the rank and scaling factor dy-
namically, allowing the model to better capture complex patterns and relationships in
the data. This adaptability is expected to improve convergence rates and enhance the
model’s ability to generalize from the training data.

Specifically, this experiment aims to:

• Assess the benefits of DoRA in enhancing the performance and efficiency of QLoRA.

• Compare the effectiveness of DoRA against standard LoRA, RS-LoRA, and LoftQ
configurations.

These configurations are consistent with those used in the previous experiments, al-
lowing for direct comparisons.
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4.6.4. Combination 4 - HQQ-LoRA

Lastly, we explore the application of a different quantization technique, Half Quadratic
Quantization (HQQ). HQQ is a quantization technique that aims to further reduce
the memory footprint and computational requirements of LLMs without compromising
performance. This experiment evaluates the impact of HQQ on model performance and
memory efficiency by applying it to the configurations used in the previous experiments.

The reason for conducting this experiment is to investigate whether HQQ can offer
additional benefits over the previously used quantization techniques. While these tech-
niques have proven effective, HQQ introduces a different approach that may yield further
improvements in efficiency and performance. HQQ claims to be way faster than other
quantization methods. HQQ is also able to quantize models to as low as 1-bit.

Specifically, HQQ aims to:

• Enhance the quantization process by reducing quantization error through a quadratic
approximation.

• Improve the overall robustness and efficiency of the fine-tuning process when com-
bined with PEFT methods.

This experiment aims to determine whether HQQ can deliver superior performance
and memory efficiency compared to the existing quantization methods, thereby con-
tributing to more effective fine-tuning techniques for large language models. The exper-
imental configurations of PEFT methods are consistent with those used in the previous
experiments, allowing for direct comparisons.

The previously used quantization methods are replaced with HQQ 4-bit and HQQ
2-bit. HQQ operates by approximating the quantization function using a quadratic
form, effectively minimizing quantization error while better preserving the original weight
distributions. This technique is designed to achieve a more refined balance between
precision and efficiency, offering enhanced performance alongside the benefits of low-bit
quantization.

Now that the experiments are explained in detail, the next section provides a detailed
analysis of the results from these experiments.
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4.7. Results

The following sections will discuss the results of the above-mentioned experiments. A
total of 226 fine-tuning runs were performed. The initial 28 runs focused on testing
various hyperparameter configurations, while the remaining runs aimed to address the
core research questions of the thesis.

The analysis of the results is structured around the following questions:

• How does quantization affect the model size and performance?

• By how much do PEFT methods reduce the trainable parameters and what is the
additional overhead memory requirement?

• How does fine-tuning using different Quantization and PEFT methods compare
with each other on model performance based on evaluation perplexity and MMLU?

• How do the methods compare with each other based on memory footprint and run
time?

4.7.1. Quantization Effect

We start by discussing the effect of quantization on the size of the model. As mentioned
in the previous section, we use two different quantization methods (NF4 + Double
Quantization (DQ) and HQQ). NF4+DQ was introduced in the QLoRA paper which
quantizes a model to 4bits and HQQ was introduced recently by Mobius Labs which
supports quantization up to 1-bit. In our experiments, we focus on 4-bit quantization
for direct comparison with QLoRA. We also look at 2-bit quantization with HQQ to
inspect the results of fine-tuning on even lower precision.

Model Model Size NF4+DQ HQQ-4bit HQQ-2bit

LLaMa 2 - 7B 13.48 GB 3.51 GB 3.51 GB 1.99 GB
LLaMa 2 - 70B 137.98 GB 32.85 GB - -
LLaMa 3 - 8B 16.07 GB 5.21 GB - -

Table 4.1.: Model sizes of the LLaMa Family before and after quantization

Table 4.1 shows us the effect of quantization on model size. We can see that quantized
models save a lot of space. Using NF4 and double quantization, we reduced the model
size by approximately 73% for LLaMa 2 7B and around 68% for LLaMa 3 8B. For the
bigger models, we see a reduction of 76% for LLaMa 2 and % for LLaMa 3. This saves
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Model Before Quantization After Quantization

LLaMa 2 7B 45.3 40.68
LLaMa 2 70B 68.9 67.12
LLaMa 3 8B 66.4 53.86

Table 4.2.: 5-shot MMLU Test Accuracy for LLaMa Models without Fine-tuning.
The second column shows the MMLU scores of the actual model, without
fine-tuning or quantization. The last column depicts the MMLU score after
quantization.

a lot of memory and can easily help to run 7B models on a local computer, while you
can run 70B models on a single 48GB GPU. The HQQ-4Bit has a similar effect, which
is expected as the precision is the same. Quantizing a model further down to 2-bit using
HQQ reduces the memory requirement by 85% which can help to run 7B parameter
models on a mobile device.

Looking at the effect of quantization on model performance, we can see in table 4.2
that all models face a degradation. There’s a clear drop in the MMLU accuracy of
all the models. We know that the weights are converted from a higher precision to a
lower precision data type. During quantization, rounding or truncation occurs, leading
to a loss of information, resulting in a drop in MMLU accuracy. This added error after
quantization is known as the quantization error. This error affects the model’s ability
to represent fine-grained differences between weights. However, the 70B model looks
less sensitive to quantization. Although speed, memory, and power usage are highly
optimized, there is an accuracy trade-off.

Let’s take a closer look at the score of LLaMa 3 models. In comparison, the drop after
quantization in LLaMa 3 is larger than LLaMa 2. One might expect LLaMa 3 to perform
better than LLaMa 2 given the amount and quality of data it is trained on. Turns out,
this high-quality training is a drawback when the model is quantized. There is a higher
quantization error. In recent studies, researchers have observed that LLaMa 3 suffers
from higher degradation in low-bit scenarios (Huang et al. 2024). LLaMa 3 is trained
on a huge corpus of a record 15 trillion tokens and it captures extremely nuanced data
relations. That means in high precision (FP32 or BF16), LLaMa 3 learns information to
the smallest of decimals possible making it more sensitive to quantization degradation.
LLaMa 3 has lack of redundancy within the network. Modifying the network is more
damaging to overall performance when a model is trained to a high level of saturation
in high-precision data type. While LLaMa 3 performs better than a lot of other models,
this quantization degradation highlights the challenge of deploying the model on smaller,
low-compute devices.

After studying the effect of quantization on the model size and performance, the
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following sections briefly discuss the impact of PEFT methods on trainable parameters
& memory requirements of these parameters.

4.7.2. Trainable Parameters

One of the primary objectives of PEFT methods is to fine-tune only a small subset
of parameters. In these experiments, we observe how different configurations of LoRA
impact the number of trainable parameters. This subsection will delve into the trainable
parameters across various PEFT methods, highlighting how each approach balances
parameter efficiency. Table 4.3 illustrates how different configurations of PEFT methods
impact the number of trainable parameters.

PEFT
Method

Model Config Trainable
Parameters

Trainable
Parameters
(%)

LoRA
LLaMa 2 7B

r = 8 19,988,480 0.2855

r = 16 39,976,960 0.5711

r = 64 159,907,840 2.2844

r = 256 639,631,360 9.1376

LLaMa 2 70B r = 64 828,375,040 1.1867

IA3

LLaMa 2 7B - 1,581,056 0.0226

LLaMa 2 70B - 8,355,840 0.0121

LLaMa 3 8B - 1,703,936 0.0212

DoRA LLaMa 2 7B

r = 8 21,348,352 0.3158

r = 16 41,336,832 0.6097

r = 64 161,267,712 2.3373

r = 256 640,991,232 9.1571

Table 4.3.: Trainable Parameters of different PEFT methods for different configuarations

In the experiments, LoRA & DoRA are applied to all linear layers (query, key, value,
and feed-forward) in the transformer block of the model. As expected, the number of
trainable parameters increases with the rank of the LoRA & DoRA configuration. This
is because the rank directly influences the size of the Low-Rank Adaptation matrices,
which in turn dictates the number of parameters that are fine-tuned. The alpha value
does not affect the number of trainable parameters, as it influences the scaling rather
than the dimensions of the matrices.
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For example, at a rank of 8, the model has approximately 19.99 million trainable
parameters, which represents only 0.2855% of the total model parameters. In contrast, a
higher rank of 256 leads to 639.63 million trainable parameters, which is about 9.1376%
of the model’s parameters. The shows that even at the highest configuration tested,
only 9% of the parameters are being fine-tuned, which is significantly lower compared to
full model fine-tuning. This highlights the efficiency of LoRA in adapting large models
without the need for extensive computational resources. DoRA adds on to LoRA in terms
of the number of parameters by around 1.5M for every configuration for a 7B model. This
increase is because apart from optimizing the LoRA components, DoRA also finetunes
the magnitude vector of the pre-trained weights as explained in 3.5. With an even lower
rank and applying LoRA or DoRA to only specific components of the transformer, the
trainable parameters can be reduced. These findings also suggest that while increasing
the rank improves the model’s ability to learn from fine-tuning, it also comes with a
higher memory cost. Therefore, a balance must be struck between achieving sufficient
model adaptability and maintaining computational efficiency, especially in environments
with limited resources.

The number of trainable parameters in IA3 are calculated based on the dimensions of
the learned vectors it adds to the key, value, and Feed Forward layers of the transformer
block. As shown in the table, the trainable parameters for IA3 across different models are
significantly lower compared to LoRA. This difference is largely due to IA3’s approach
of using learned vectors rather than low-rank updates to a weight matrix, as in LoRA.
This method keeps the number of trainable parameters much smaller. Additionally,
while LoRA is applied across all linear layers in transformers, IA3 does not adjust the
query layers, further reducing the number of trainable parameters. For instance, in the
LLaMa 2 7B model, IA3 introduces just 1,581,056 trainable parameters, accounting for
a mere 0.02% of the total model parameters (approximately 1.6M) whereas the same for
LoRA with rank 8 is 0.2% (approximately 20M). This is in stark contrast to the much
larger parameter counts associated with LoRA, highlighting IA3’s efficiency.

4.7.3. PEFT Memory Overhead

This part focuses on the additional memory requirements for the PEFT methods. Table
4.4 provides insights into how the PEFT methods impact the size of the model. It
reveals critical insights regarding the trade-offs between model size and the chosen PEFT
configuration.

Focusing on LoRA and DoRA, Similar to the trainable parameters, it was observed
that α does not affect the size. The model size increases with higher ranks. For the
lowest rank, the additional memory required is only about 39 MB, which is negligible
compared to the overall model size. This small increment is unlikely to affect fine-tuning
on most hardware setups, making it a very efficient option when computational resources
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PEFT
Method

Model Config Post Quan-
tization

+ PEFT Difference

LoRA
LLaMa 2 7B

r = 8 3.51 GB 3.542 GB 38.648 MB

r = 16 3.51 GB 3.579 GB 76.773 MB

r = 64 3.51 GB 3.803 GB 305.523 MB

r = 256 3.51 GB 4.696 GB 1220.523 MB

LLaMa 2 70B r = 64 32.85 GB 34.399 GB 1582.552 MB

IA3

LLaMa 2 7B - 3.51 GB 3.5108 GB 6.554 MB

LLaMa 2 70B - 32.85 GB 32.89 GB 34.42 MB

LLaMa 3 8B - 5.21 GB 5.2144 GB 7.02 MB

DoRA LLaMa 2 7B

r = 8 3.51 GB 3.545 GB 41.242 MB

r = 16 3.51 GB 3.582 GB 79.367 MB

r = 64 3.51 GB 3.805 GB 308.117 MB

r = 256 3.51 GB 4.699 GB 1223.117 MB

Table 4.4.: Additional memory requirement of different PEFT methods for different con-
figurations.

are constrained. The highest rank tested (256), results in a considerable memory over-
head of 1221 MB. The memory requirements of DoRA closely match those of LoRA,
with DoRA requiring only an additional of around 3 MB for each configuration As dis-
cussed, this extra 3 MB can be attributed to the additional magnitude vector of the
pre-trained weights that DoRA fine-tunes. While this allows for more expressive adap-
tation during fine-tuning, the large memory footprint could pose challenges, particularly
for environments with limited GPU memory. This investigation highlights that higher
ranks result in much higher memory utilization. Selecting a lower rank could be required
for applications with limited GPU RAM to prevent problems during fine-tuning.

When integrating IA3 layers into Quantized LLMs, the additional memory overhead
remains minimal. For instance, when applied to a 70B parameter model, IA3 adds
approximately 35 MB of memory, which is negligible relative to the overall model size.
This efficiency is achieved because IA3 modifies only a few key parameters, leaving the
vast majority of the model unchanged. As a result, the approach not only maintains
the model’s performance but also enables scalable deployment, particularly in memory-
constrained environments.

Additionally, when these results are considered alongside model performance based
on perplexity and downstream tasks, better decisions can be made regarding which con-
figurations to use in different settings. This integrated approach enhances the overall
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efficiency and effectiveness of fine-tuning strategies across various contexts. The sub-
sequent sections will explore how these different PEFT configurations with Quantized
models impact model performance, particularly using evaluation perplexity and 5-shot
MMLU accuracy.

4.7.4. Evaluation Perplexity

In this subsection, we will briefly look at the evaluation perplexity of the experiments
around different PEFT methods applied to Quantized LLMs. The outcome of these
results will help us determine which combination of methods to use in different scenarios.

As outlined in section 4.5, Perplexity is a measure of how well a probability model
predicts a sample. The basic intuition is that the lower the perplexity measure the better
the language model is at modeling unseen sentences. In the experiments, perplexity
serves as a metric for assessing fine-tuning performance across various methods, helping
to identify optimal hyperparameter configurations. Each dataset was split into 80%
training and 20% validation before training. The evaluation PPL is calculated on this
20% data which the model does not see during training. Table 4.5 shows the mean PPL
across different datasets and methods.

LLaMa 2 7B LLaMa 3 8B

Method Unnatural OASST HH-RLHF Unnatural OASST HH-RLHF

QLoRA 2.1424 11.1491 3.0468 2.373 13.7290 3.7129

Q-RsLoRA 2.2779 11.1123 2.9612 2.6201 12.4908 -

QLoRA + LoftQ 1.9432 10.3251 3.0988 - - -

Q-RsLoRA + LoftQ 2.1311 12.1469 2.9019 - - -

Q-IA3 1.5634 3.3831 4.1971 1.5776 3.576 5.4914

QDoRA 1.9866 9.1272 3.4329 - - -

QDoRA + RsLoRA 1.8669 10.6233 3.2737 - - -

QDoRA + LoftQ 1.693 10.5118 3.4153 - - -

HQQ-4bit-LoRA 1.6923 10.2474 - - - -

HQQ-2bit-LoRA 1.887 15.4132 - - - -

Table 4.5.: Mean Evaluation Perplexity for different combinations of PEFT and Quan-
tization methods. The scores of QLoRA, QDoRA, and HQQ-LoRA are aver-
ages over different configurations whereas Q-IA3 is just a single configuration.
The detailed results for each configuration can be found in the Appendix B.2.
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Config Model Unnatural

QLoRA LLaMa 2 70B 1.5344
Q-IA3 LLaMa 2 70B 1.4584

Table 4.6.: Evaluation Perplexity for QLoRA and QIA3 for LLaMa 2 70B model. For
LoRA, r = 64 and α = 16

For LLaMa 2 7B, the results indicate that validation perplexity is the lowest for
Q-IA3 while it remains relatively consistent across all other methods with a variation
of around ±0.2 for Unnatural and HH-RLHF, while the same being around ±1.0 for
OASST. Notably, the OASST dataset exhibits higher perplexity compared to the other
two datasets. A reason for this is the dataset size and quality. As we mentioned in section
4.2, OASST is significantly smaller than other datasets. Additionally, we don’t take in
entire conversations—just the initial replies. This affects the quality of the dataset.
The IA3 method, known for its parameter efficiency, shows significant improvements,
particularly with OASST, achieving a 67% reduction in perplexity for LLaMa2 compared
to the combination of QLoRA and LoftQ. This highlights IA3’s ability to effectively fine-
tune models with less data, making it suitable for tasks where data is limited. As we
scale up to 70B models in Table 4.6, the results are similar to as seen in 7B models.

Q-DoRA provides good competition to QLoRA while giving consistent perplexity
scores across all 3 datasets. As RsLoRA is added to this mix, the perplexity wors-
ens for OASST indicating a sensitivity to smaller datasets. As observed with LoRA, the
addition of LoftQ contributes to improvement with DoRA as well.

HQQ in its 4-bit configuration offers strong competition to NF4+DQ, with HQQ-
4bit-LoRA achieving better perplexity scores than QLoRA. However, the 2-bit version
shows a performance drop, particularly on the OASST dataset. This suggests that fine-
tuning in a 2-bit scenario may require more high-quality data to mitigate the increased
quantization error and improve results.

Although we have fewer results for LLaMa 3, they show higher values as compared
to LLaMa 2. This difference is unexpected, as one might assume that LLaMa 3 would
outperform its predecessor. However, this could be explained by the higher quantization
error observed in LLaMa 3, potentially contributing to the increased perplexity during
evaluation, emphasizing the impact of quantization degradation.

Having examined various aspects so far, the next step is to evaluate the performance
of the fine-tuned quantized models on a downstream task. This evaluation will provide
insight into how these models perform in real-world applications.
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4.7.5. Downstream Task - MMLU

The most important aspect of fine-tuning a model is to evaluate its performance on
unseen downstream tasks. The MMLU benchmark, as mentioned in section 4.5, is
widely used to evaluate LLMs. Table 4.7 displays the 5-shot MMLU results from the
original QLoRA paper and figure 4.1, table 4.8 and table 4.9 display the 5-shot MMLU
results for the experiments of this thesis.

Model No fine-tuning Unnatural OASST HH-RLHF

LLaMa 7B 35.1 41.9 36.6 34.9

LLaMa 65B 63.4 61.3 62.2 60.1

Table 4.7.: 5-Shot MMLU Accuracy of LLaMA finetuned on the corresponding datasets
using QLoRA. Config used r = 64, α = 16. Table and caption adapted
from (Dettmers et al. 2024)

LLaMa 2 7B LLaMa 3 8B

No fine-tuning 40.68 53.86

Method Unnatural OASST HH-RLHF Unnatural OASST HH-RLHF

QLoRA 46.70 44.29 38.37 57.13 59.18 53.98

Q-RsLoRA 37.01 38.54 32.25 38.85 46.67 -

Q-RsLoRA* 42.74 42.82 34.69 47.43 55.39 -

QLoRA + LoftQ 47.57 43.86 40.16 - - -

Q-RsLoRA + LoftQ 41.73 42.41 34.37 - - -

Q-IA3 47.17 45.18 41.78 61.16 59.93 61.42

QDoRA 47.29 42.69 39.1 - - -

QDoRA + RsLoRA 41.95 42.07 36.12 - - -

QDoRA + LoftQ 47.24 44.64 39.99 - - -

HQQ-4bit-LoRA 44.84 43.87 - - - -

HQQ-2bit-LoRA 31.43 25.1 - - - -

Table 4.8.: Mean 5-shot MMLU Accuracy of fine-tuned quantized LLaMa Models for
different combinations PEFT and Quantization methods. The first row shows
the 5-shot MMLU Accuracy of the quantized models without fine-tuning.
The row RsLoRA* excludes the configs of RsLoRA which were unstable.
The detailed results for each configuration can be found in the Appendix
B.2.
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Config Model Unnatural

No fine-tuning LLaMa 2 70B 67.12
QLoRA LLaMa 2 70B 64.61
Q-IA3 LLaMa 2 70B 67.17

Table 4.9.: 5-shot MMLU Test Accuracy for QLoRA and QIA3 for LLaMa 2 70B model.
For LoRA, r = 64 and α = 16

Figure 4.1.: Mean 5-shot MMLU Accuracy of fine-tuned quantized LLaMa Models for
different combinations PEFT and Quantization methods. The first row
shows the 5-shot MMLU Accuracy of the quantized models without fine-
tuning.

QLoRA, RsLoRA, and LoftQ: The mean MMLU accuracy depicts a high-level overview
of the performance of models in downstream tasks using different LoRA variations.
Comparing each method with the base model without fine-tuning, shows that most of
the methods with proper configurations tend to improve the results.

The results align with those from the official QLoRA experiments. For 7B model
size, the QLoRA authors reported a significant improvement on the Unnatural Instruc-
tions dataset compared to the baseline without fine-tuning, a marginal improvement on
OASST, and a slight decline on HH-RLHF. Shifting focus to the largest model size, a
decline in MMLU performance was observed when using QLoRA. This could be due
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to the large models having absorbed vast amounts of information, making them more
sensitive to fine-tuning. This thesis observes a similar pattern of impact across these
datasets.

For LLaMa 2, RsLoRA had a huge drop in accuracy while using high rank with high
alpha, this can be seen in table B.3. Excluding these results from the mean shows that
even RsLoRA enhances the model to perform better on downstream tasks (RsLoRA*).
On the other hand, a drop in scores for LLaMa 3 is observed in RsLoRA. This can again
be attributed to the fact that LLaMa 3 is very redundant to changes. Fine-tuning LLaMa
3 with more information and high-rank adapters doesn’t lead to major improvements in
performance.

Performance variations across the three different datasets are evident. For both mod-
els, the HH-RLHF dataset seems to contribute minimally to improving MMLU scores,
with most scenarios even showing a decline. A possible reason for this could be that the
LLaMa models might have already been exposed to similar types of data during their
pre-training. HH-RLHF dataset is used to train models to give clean, healthy, and non-
abusive responses. This general-purpose nature may result in less effective enhancement
of the specific skills measured by MMLU.

Among all the different combinations, LoRA when applied with LoftQ initialization
performs the best on average. It had already been established by various researchers
that QLoRA was the state-of-the-art technique to fine-tune models in low-bit and in a
parameter-efficient way. Combining this with an initialization that is aimed at reducing
quantization error improves performance.

Q-IA3: The analysis now shifts to the evaluation of IA3. Despite the minimal number
of parameters involved and negligible memory overhead, it remains crucial to evaluate
whether fine-tuning such a small set of parameters can still yield effective results. Simi-
lar to perplexity, the 5-Shot MMLU Accuracy Scores of IA3 are compared to the other
combinations. It is observed, that IA3 performs excellently. IA3 demonstrates robust
performance across datasets, showing significant improvement over the no-fine-tuning
baseline. Particularly for LLaMa 2, the MMLU accuracy of IA3 on the Unnatural
Instructions dataset is consistent with the QLoRA + LoftQ combination. However,
IA3 surpasses this combination on the OASST and HH-RLHF datasets, showcasing its
adaptability and strength across diverse tasks. Similarly, when applied to LLaMa3, IA3
achieves impressive accuracy, outperforming other configurations and further emphasiz-
ing its effectiveness in fine-tuning large models. Even after scaling to a larger model
of LLaMa 2 with 70B parameters, IA3 performed better with a minimal number of
parameters to fine-tune.

IA3 continues to stand out by requiring the fewest parameters for fine-tuning while
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maintaining strong performance, as evidenced by both MMLU accuracy and validation
perplexity comparisons. Given these findings, IA3 emerges as the optimal choice among
the evaluated PEFT methods seen so far, offering a compelling balance of efficiency and
accuracy.

Q-DoRA: As observed with perplexity, Q-DoRA also demonstrates consistent perfor-
mance on MMLU. However, it falls slightly short in the small dataset scenario of OASST.
When combined with rank-stabilizing LoRA, Q-DoRA significantly impacts MMLU per-
formance on the Unnatural Instructions and HH-RLHF datasets. This suggests that the
rank-stabilizing factor is not a favorable combination with DoRA.

HQQ: In terms of downstream tasks, HQQ-4bit demonstrates consistent performance
compared to NF4+DQ. Although the 2-bit version significantly reduces memory usage,
it results in a substantial drop in scores, likely due to increased quantization error. This
outcome indicates that further research is needed to enhance performance in lower-bit
quantization scenarios.

4.7.6. Memory Footprint

Quantization PEFT Method LLaMa 2 7B LLaMa 2 70B

NF4+DQ

LoRA 7.43 GB 48.48 GB
RsLoRA 7.43 GB -

LoRA + LoftQ 7.43 GB -
RsLoRA + LoftQ 7.43 GB -

DoRA 8.97 GB -
DoRA + RsLoRA 8.97 GB -

DoRA + LoftQ 9.02 GB -
IA3 7.63 GB 44.58 GB

HQQ-4bit LoRA 7.34 GB -
HQQ-2bit LoRA 5.99 GB -

Table 4.10.: LLaMa 2 - Average GPU Consumption for different techniques over 500
steps. For LoRA-related methods, the rank used is 64 and alpha 16.

The average memory footprint for all different Q-PEFT training experiments using
LLaMA 2 as the base model can be seen in table 4.10. Since all experiments were
running on shared servers it was quite difficult to keep track of the memory footprint
of a specific training run. Hence, the results show the average consumption of over 500
steps of fine-tuning on Unnatural core for different configurations on Nvidia RTX A6000
(48 GB) GPUs.
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While using the NF4 and Double Quantization techniques, all the variations of the
LoRA experiments have the same memory footprint. This shows that RsLoRA and
LoftQ do not add any overhead consumption. For LLaMa 2 7B, DoRA has around 1.5
GB of additional memory footprint when compared to LoRA. This can be attributed to
the additional magnitude vector of the decomposed pre-trained model which is tuned in
DoRA as explained in 3.5. IA3 has a memory consumption of 7.63 GB, comparable to
LoRA. However, with a 70B model, LoRA incurs a significantly higher memory overhead,
exceeding IA3 by 3 GB. Additionally, it is seen that tuning a 70B model with QLoRA
would need a slightly larger GPU. The comparison between HQQ-4bit and NF4 + DQ
shows minimal difference in memory footprint. As anticipated, HQQ-2bit requires even
less memory.

4.7.7. Average Runtime

The average runtime for all different Q-PEFT training experiments using LLaMA 2 as
the base model can be seen in table 4.11. The data reflects the average runtime over 500
fine-tuning steps on the Unnatural Instructions dataset across different configurations.
These experiments were conducted on Nvidia RTX A6000 (48 GB) GPUs.

Quantization PEFT Method LLaMa 2 7B LLaMa 2 70B

NF4+DQ

LoRA 2h 15m 18h 40m
RsLoRA 2h 20m -

LoRA + LoftQ 2h 25m -
RsLoRA + LoftQ 2h 30m -

DoRA 5h 30m -
DoRA + RsLoRA 5h 30m -

DoRA + LoftQ 5h 40m -
IA3 2h 17h 10m

HQQ-4bit LoRA 2h 15m -
HQQ-2bit LoRA 2h 15m -

Table 4.11.: LLaMa 2 - Average Runtime for different techniques over 500 steps. For
LoRA-related methods, the rank used is 64 and alpha 16.

For the 7B models, LoRA and IA3 completed 500 steps in approximately 2 hours.
RsLoRA required just 5 minutes longer, while LoftQ added 10 minutes due to its initial
weight initialization to reduce quantization error. DoRA, however, was the slowest,
taking more than twice the time of the other methods. One possible reason could be
that the decomposition of the weight matrices into magnitude and direction and the
fine-tuning of them could require much more computing time. This raises concerns,
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as scaling up for more steps could make DoRA excessively time-consuming, potentially
making full model fine-tuning a more practical option. For the 70B model, LoRA requires
an additional hour and a half compared to IA3 to complete 500 steps. When scaled to
larger models and more steps, IA3 demonstrates greater efficiency due to the smaller
size of the parameters it tunes.

The table also suggests that the choice of quantization technique does not signifi-
cantly impact runtime, indicating that the added computational overhead from different
quantization methods is minimal.

4.7.8. Summary

Having explored the various aspects of the results from different combinations of Quan-
tization and PEFT methods, it is evident that while QLoRA remains state-of-the-art,
other methods also demonstrate comparable performance. Q-IA3, in particular, emerges
as a strong competitor. In our experiments, Q-IA3 exhibited fewer trainable parame-
ters, lower memory overhead, consistent perplexity, better MMLU scores, and a similar
memory footprint and runtime compared to LoRA, making it a viable alternative for
efficient fine-tuning.

On the quantization side, HQQ-4bit also shows promise as an alternative to NF4+DQ,
delivering solid performance. However, while HQQ-2bit allows models to be quantized to
even smaller sizes, the significant drop in MMLU scores indicates that further research is
necessary to optimize low-bit quantization methods. This suggests that while HQQ-2bit
offers potential benefits in reducing model size, its impact on performance needs to be
carefully addressed before it can be considered a reliable option.
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5.1. Summary

In this thesis, the primary objective was to optimize and critically evaluate LLMs through
quantization and PEFT methods. The aim was to replicate and extend QLoRA’s success
and assess its effectiveness and performance across different PEFT strategies and LLMs.

To accomplish this, the LLaMa series of models was selected as the base models for
fine-tuning. Different datasets representing different domains of Natural Language Gen-
eration tasks were then selected. Following this, a comprehensive review of Quantization
and PEFT methods was conducted, leading to the selection of a subset of methods for
experimentation. A codebase and repository were set up for the experiments. Initial
small-scale experiments were conducted to determine the best set of hyperparameter
configurations for different fine-tuning combinations. Following this, the LLaMa models
were fine-tuned using various combinations of Quantization and PEFT methods. These
combinations were critically evaluated based on several criteria, including the impact of
quantization, the number of trainable parameters, memory overhead, memory footprint,
runtime, evaluation perplexity, and performance on a standardized downstream task.

The experiments successfully replicated results as observed in (Dettmers et al. 2024).
The experimental results highlight why QLoRA is considered state-of-the-art for effi-
ciently fine-tuning large language models. QLoRA performed exceptionally well across
all evaluated criteria, including evaluation perplexity and consistent results on the MMLU
task. Additionally, it demonstrated strong performance in terms of memory requirements
and runtime, making it a highly effective and resource-efficient method for fine-tuning.
The addition of LoftQ to QLoRA slightly enhanced its performance by focusing on min-
imizing the initial quantization error. This improvement resulted in better accuracy and
stability during fine-tuning, making the combination of QLoRA and LoftQ even more
effective across various tasks and evaluation metrics.

Q-IA3 consistently matched QLoRA’s performance, while improving the performance
in terms of MMLU. For example, on the LLaMa 3 8B model, Q-IA3 achieved scores of
61.16 on the Unnatural dataset, 59.93 on OASST, and 61.42 on HHRLHF, which are
either on par with or slightly better than the QLoRA results. Q-IA3 delivered top results
across all datasets while requiring the fewest trainable parameters. Its memory footprint
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and runtime were nearly identical to those of QLoRA. IA3, while promising, has not yet
reached the popularity of LoRA and may require further research, practical implemen-
tation, and optimization to become a stronger competitor. Its unique advantages, such
as lower parameter requirements, highlight its potential, but broader adoption and more
real-world applications are needed to establish its viability as a mainstream fine-tuning
method for large language models.

Q-DoRA also delivered consistent results compared to QLoRA, but its efficiency is
questionable due to the training time, which was more than twice as long. This extended
runtime makes Q-DoRA less practical for scenarios where quick fine-tuning is essential,
despite its strong performance across various tasks.

For a long time, Normal Float 4 and Double Quantization have been the state-of-
the-art techniques. However, this thesis has observed that HQQ also delivers consistent
results, suggesting that further research into lower-bit scenarios could enhance this tech-
nique. Although not tested in this thesis, HQQ also offers the flexibility to quantize each
layer or module with a different configuration.

Overall, the integration of parameter-efficient fine-tuning techniques (PEFTs) with
quantization significantly enhances the efficiency of large language models, making them
more accessible and practical for a wider range of users. These methods reduce the
number of trainable parameters, lower memory requirements, and maintain strong per-
formance across various tasks, striking a balance between computational demands and
model effectiveness. As these approaches continue to evolve, they hold the potential to
further democratize AI technology and drive innovation across diverse fields.

Limitations: The use of shared GPUs on the server sometimes impacted access and
computational power. Dedicated CPUs/GPUs would enable more consistent and ex-
tensive experimentation. Additionally, storage limitations on the servers hindered the
ability to download larger models.

5.2. Future Work

While this thesis provides a valuable exploration of a few Quantization and PEFT com-
binations, it only begins to explore the depth of this domain. As this work was being
written, new Quantization and PEFT methods continued to emerge, some of which were
discussed in the background sections (2.5 and 2.6). These individual methods must be
tested as combinations for improvements in fine-tuning and deploying LLMs in a low-
resource environment. Additionally, greater emphasis could be placed on testing these
method combinations with even larger models, provided sufficient resources are avail-
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able. Additionally, exploring HQQ’s flexibility to quantize each layer or module with
different configurations could be a promising area for future research.

Moving forward, a key area for improvement is the evaluation of these fine-tuned LLMs
across a diverse range of downstream tasks. Given the variety of domains in which LLMs
are fine-tuned, it is essential to evaluate them on tasks that closely align with the specific
purposes for which they were fine-tuned.
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A. Program Code / Resources

The entire source code of the thesis can be found in the GitHub Repository - https:

//github.com/Sharan1712/quantization_peft

The official QLoRA source code was used as the base and it was updated to facilitate
other PEFT and quantization techniques that were needed for the thesis.

The repository consists of a Readme.Md file which has the details of replication.
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B. Additional Experimental Results

This chapter consists of extra details related to the experiments conducted in the thesis.

B.1. Hyperparameter Settings

The table B.1 focuses on the hyperparameter configurations for different fine-tuning runs
for different LLMs and datasets. Most of the settings are directly replicated from the
QLoRA paper and source code.

LLaMa 2 7B/LLaMa 2 8B LLaMa 2 70B

Hyperparameter Unnatural OASST HH-RLHF Unnatural

Batch Size 8 32 16 8

Steps 3000 1000 3000 2000

Max Source Length 384 - - 384

Max Target Length 128 512 768 128

Learning Rate 0.0002 0.0002 0.0002 0.0002

LR Scheduler Constant Constant Constant Constant

Weight Decay 0.001 0.001 0.001 0.001

Table B.1.: Training hyperparameters for applying PEFT on Quantized LLMs on differ-
ent datasets and across model sizes.
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B.2. Detailed Results

LLaMa2 LLaMa3

LoRA Config Unnatural OASST HH-RLHF Unnatural OASST HH-RLHF

r = 64, α = 16 2.3701 15.7632 3.4377 2.5026 22.7634 4.0311

r = 64, α = 16 + RsLoRA 2.0637 12.7108 2.4762 2.2161 11.6514 -

r = 64, α = 16 + LoftQ 1.9078 8.0551 3.4419 - - -

r = 64, α = 16 + LoftQ + RsLoRA 2.0989 12.9316 2.5861 - - -

r = 8, α = 16 2.3158 12.0986 3.6142 2.4358 7.0868 4.4494

r = 8, α = 16 + RsLoRA 1.9611 13.3002 3.3981 1.9712 10.3298 -

r = 8, α = 16 + LoftQ 2.2766 7.2956 3.6309 - - -

r = 8, α = 16 + LoftQ + RsLoRA 2.1042 12.9427 3.4141 - - -

r = 16, α = 32 2.0806 14.8292 3.2428 2.4503 11.8029 3.9345

r = 16, α = 32 + RsLoRA 1.9545 10.8588 3.0265 2.1954 12.3694 -

r = 16, α = 32 + LoftQ + RsLoRA 2.2322 12.9507 3.1276 - - -

r = 64, α = 128 2.0137 11.7592 2.5184 2.2635 12.7997 3.1769

r = 64, α = 128 + RsLoRA 2.7778 9.5901 3.3966 4.3249 16.7684 -

r = 64, α = 128 + LoftQ 1.665 13.4349 2.5697 - - -

r = 256, α = 128 1.9317 11.3912 2.4207 2.2128 14.1924 2.973

r = 256, α = 128 + RsLoRA 2.8096 3256.7863 149.7744 172.2573 857.3021 -

r = 256, α = 128 + LoftQ 1.9234 12.5148 2.7525 - - -

r = 256, α = 32 + RsLoRA 2.1005 9.1015 3.0795 2.3927 11.3352 -

r = 256, α = 32 + LoftQ + RsLoRA 2.089 9.7625 2.4801 - - -

Table B.2.: Evaluation Perplexity across different configurations of Q-PEFT methods.
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LLaMa2 LLaMa3

QLoRA Config Unnatural OASST HH-RLHF Unnatural OASST HH-RLHF

r = 64, α = 16 49.29 43.39 39.16 60.78 60.42 56.74

r = 64, α = 16 + RsLoRA 43.39 44.29 35.39 55.52 58.44

r = 64, α = 16 + LoftQ 49.14 44.39 40.01 - - -

r = 64, α = 16 + LoftQ + RsLoRA 42.31 45.11 37.2 - - -

r = 8, α = 16 48.96 42.46 42.05 59.66 57.2 56.36

r = 8, α = 16 + RsLoRA 49.14 42.01 39.37 56.78 57.48

r = 8, α = 16 + LoftQ 46.79 43.54 40 - - -

r = 8, α = 16 + LoftQ + RsLoRA 47.16 43.59 36.05 - - -

r = 16, α = 32 46.14 44.65 38.17 58.27 59.67 53.67

r = 16, α = 32 + RsLoRA 41.56 42.63 32.02 51.59 57.4

r = 16, α = 32 + LoftQ + RsLoRA 42.73 40.77 32.11 - - -

r = 64, α = 128 43.73 46.3 36.07 52.11 59.16 50.54

r = 64, α = 128 + RsLoRA 23.81 29.81 29.24 25.39 32.76

r = 64, α = 128 + LoftQ 47.28 43.43 38.75 - - -

r = 256, α = 128 45.39 43.86 36.4 54.84 59.47 52.58

r = 256, α = 128 + RsLoRA 27.28 25.87 25.51 24.01 25.72

r = 256, α = 128 + LoftQ 47.05 44.09 41.89 - - -

r = 256, α = 32 + RsLoRA 36.87 42.34 31.99 25.81 48.22

r = 256, α = 32 + LoftQ + RsLoRA 34.71 40.17 32.1 - - -

Table B.3.: 5-shot MMLU Test Accuracy for LLaMa Models fine-tuned with different
LoRA methods on different datasets. The quantization method used here is
NF4 + DQ

The detailed perplexity and MMLU results for QLoRA and variants in table B.2 and B.3
offer valuable insights into the most effective LoRA hyperparameter combinations for
different datasets and variations. By identifying underperforming configurations, these
results allow for the exclusion of less optimal setups from future analyses.
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LLaMa 2

DoRA Config Unnatural OASST HH-RLHF

r = 64, α = 16 2.5031 7.9429 3.6838

r = 64, α = 16 + RsLoRA 2.1689 14.4945 2.6131

r = 64, α = 16 + LoftQ 1.6519 8.3619 3.6622

r = 8, α = 16 2.0004 6.8301 3.7683

r = 8, α = 16 + RsLoRA 1.6834 9.2414 3.7827

r = 8, α = 16 + LoftQ 1.6492 6.8758 3.7682

r = 16, α = 32 + RsLoRA 1.6675 10.1681 3.6026

r = 64, α = 128 1.6887 12.9143 3.4741

r = 64, α = 128 + LoftQ 1.7405 12.0702 3.1668

r = 256, α = 128 1.754 8.8216 2.8053

r = 256, α = 128 + LoftQ 1.7303 14.7391 3.064

r = 256, α = 32 + RsLoRA 1.9479 8.5892 3.0962

Table B.4.: The detailed Evaluation Perplexity for different configurations for DoRA.

LLaMa 2 7B

DoRA Config Unnatural OASST HH-RLHF

r = 64, α = 16 48.63 42.56 41.12

r = 64, α = 16 + RsLoRA 45.15 44.35 37.93

r = 64, α = 16 + LoftQ 49.21 43.92 40.79

r = 8, α = 16 48.61 42.27 40.01

r = 8, α = 16 + RsLoRA 48.92 41.83 41.98

r = 8, α = 16 + LoftQ 48.72 43.52 41.46

r = 16, α = 32 + RsLoRA 46.04 41.05 33.47

r = 64, α = 128 46.27 42.08 36.94

r = 64, α = 128 + LoftQ 44.23 45.99 39.2

r = 256, α = 128 45.65 43.85 38.32

r = 256, α = 128 + LoftQ 46.79 45.12 38.5

r = 256, α = 32 + RsLoRA 27.68 40.89 31.26

Table B.5.: 5-shot MMLU Test Accuracy for LLaMa 2 7B Model fine-tuned with different
DoRA combinations on different datasets. The quantization method used
here is NF4 + DQ

The detailed perplexity and MMLU results for DoRA in table B.4 and B.5 offer valu-
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able insights into the most effective combinations for different datasets and variations.

HQQ Bits LoRA Config Unnatural OASST

4-bit r = 64, α = 16 1.6352 8.7849

2-bit r = 64, α = 16 1.8301 8.3133

4-bit r = 8, α = 16 1.6473 6.7715

2-bit r = 8, α = 16 1.8289 10.0195

4-bit r = 64, α = 128 1.7369 12.7801

2-bit r = 64, α = 128 1.9199 20.8165

4-bit r = 256, α = 128 1.7496 12.6529

2-bit r = 256, α = 128 1.9691 22.5033

Table B.6.: The detailed Evaluation Perplexity for different configurations of HQQ-
LoRA.

HQQ Bits LoRA Config Unnatural OASST

4-bit r = 64, α = 16 46.28 43.18

2-bit r = 64, α = 16 32.48 24.95

4-bit r = 8, α = 16 46.36 43.58

2-bit r = 8, α = 16 33.29 25.03

4-bit r = 64, α = 128 43.15 44.33

2-bit r = 64, α = 128 31.92 23.62

4-bit r = 256, α = 128 43.55 44.39

2-bit r = 256, α = 128 28.03 26.79

Table B.7.: 5-shot MMLU Test Accuracy for LLaMa 2 7B Model fine-tuned with different
HQQ-LoRA combinations on different datasets.

The detailed perplexity and MMLU results for HQQ with LoRA in table B.6 and B.7
offer valuable insights into the effect of quantizing into lower bits for different datasets
and hyperparameters.
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